This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

predint

Prediction intervals for cfit or sfit object

Syntax

ci = predint(fitresult,x)
ci = predint(fitresult,x,level)
ci = predint(fitresult,x,level,intopt,simopt)
[ci,y] = predint(...)

Description

ci = predint(fitresult,x) returns upper and lower 95% prediction bounds for response values associated with the cfit object fitresult at the new predictor values specified by the vector x. fitresult must be an output from the fit function to contain the necessary information for ci. ci is an n-by-2 array where n = length(x). The left column of ci contains the lower bound for each coefficient; the right column contains the upper bound.

ci = predint(fitresult,x,level) returns prediction bounds with a confidence level specified by level. level must be between 0 and 1. The default value of level is 0.95.

ci = predint(fitresult,x,level,intopt,simopt) specifies the type of bounds to compute.

intopt is one of

  • 'observation' — Bounds for a new observation (default)

  • 'functional' — Bounds for the fitted curve

simopt is one of

  • 'off' — Non-simultaneous bounds (default)

  • 'on' — Simultaneous bounds

Observation bounds are wider than functional bounds because they measure the uncertainty of predicting the fitted curve plus the random variation in the new observation. Non-simultaneous bounds are for individual elements of x; simultaneous bounds are for all elements of x.

[ci,y] = predint(...) returns the response values y predicted by fitresult at the predictors in x.

Note

predint cannot compute prediction intervals for non-parametric regression methods such as Interpolant, Lowess, and Spline.

Examples

collapse all

Compute and plot observation and functional prediction intervals for a fit to noisy data.

Generate noisy data with an exponential trend.

x = (0:0.2:5)';
y = 2*exp(-0.2*x) + 0.5*randn(size(x));

Fit a curve to the data using a single-term exponential.

fitresult = fit(x,y,'exp1');

Compute 95% observation and functional prediction intervals, both simultaneous and nonsimultaneous.

p11 = predint(fitresult,x,0.95,'observation','off');
p12 = predint(fitresult,x,0.95,'observation','on');
p21 = predint(fitresult,x,0.95,'functional','off');
p22 = predint(fitresult,x,0.95,'functional','on');

Plot the data, fit, and prediction intervals. Note that the observation bounds are wider than the functional bounds.

subplot(2,2,1)
plot(fitresult,x,y), hold on, plot(x,p11,'m--'), xlim([0 5]), ylim([-1 5])
title('Nonsimultaneous Observation Bounds','FontSize',9)
legend off
   
subplot(2,2,2)
plot(fitresult,x,y), hold on, plot(x,p12,'m--'), xlim([0 5]), ylim([-1 5])
title('Simultaneous Observation Bounds','FontSize',9)
legend off

subplot(2,2,3)
plot(fitresult,x,y), hold on, plot(x,p21,'m--'), xlim([0 5]), ylim([-1 5])
title('Nonsimultaneous Functional Bounds','FontSize',9)
legend off

subplot(2,2,4)
plot(fitresult,x,y), hold on, plot(x,p22,'m--'), xlim([0 5]), ylim([-1 5])
title('Simultaneous Functional Bounds','FontSize',9)
legend({'Data','Fitted curve', 'Prediction intervals'},...
       'FontSize',8,'Location','northeast')

See Also

| |

Introduced before R2006a