Main Content

getExpectedPaddedInputData

Class: dlhdl.Processor
Namespace: dlhdl

Pad input data for deep learning processor IP core

Since R2023b

Description

expectedpaddedInput = getExpectedPaddedInputData(hProc,unpaddedInput) returns the padded input data according to the convolution thread number of the processor configuration of the deep learning processor hProc.

example

Input Arguments

expand all

Deep learning processor, specified as a dlhdl.Processor object.

Unpadded input data, specified as a numeric array, cell array, or dlarray object. If the network input to the processor object is a dlnetwork object, this argument must be a dlarray object. The dimensions of this argument must match the network input layer dimensions. For example, if the input layer size is 224-by-224-by-3, the unpadded input array size must be 224-by-224-by-3.

Output Arguments

expand all

Padded input data returned as a numeric array, cell array, or dlarray object. The method pads the input data to match the format of the deep learning processor IP core. To learn more about the data padding format, see External Memory Data Format.

Examples

expand all

Retrieve padded input data for a network with an input layer of size 10-by-10-by-5. The convolution thread number is nine and the expected padded input data should be an array of size 10-by-10-by-8.

Create a network with an input layer of size 10-by-10-by-5.

layers = [imageInputLayer([10,10,5],'Normalization','none')
convolution2dLayer(3,3)
regressionLayer];
layers(2).Weights = ones(3,3,5,3);
layers(2).Bias = ones(1,1,3);
net = assembleNetwork(layers);

Create a processor configuration object and set the convolution thread number as nine.

hPC = dlhdl.ProcessorConfig;
hPC.setModuleProperty('conv','ConvThreadNumber',9);
hPC = 

                    Processing Module "conv"
                            ModuleGeneration: 'on'
                          LRNBlockGeneration: 'off'
                 SegmentationBlockGeneration: 'on'
                            ConvThreadNumber: 9
                             InputMemorySize: [227 227 3]
                            OutputMemorySize: [227 227 3]
                            FeatureSizeLimit: 2048

                      Processing Module "fc"
                            ModuleGeneration: 'on'
                      SoftmaxBlockGeneration: 'off'
                              FCThreadNumber: 4
                             InputMemorySize: 25088
                            OutputMemorySize: 4096

                  Processing Module "custom"
                            ModuleGeneration: 'on'
                                     Sigmoid: 'off'
                                   TanhLayer: 'off'
                                    Addition: 'on'
                                   MishLayer: 'off'
                              Multiplication: 'on'
                                    Resize2D: 'off'
                                  SwishLayer: 'off'
                             InputMemorySize: 40
                            OutputMemorySize: 120

              Processor Top Level Properties
                              RunTimeControl: 'register'
                               RunTimeStatus: 'register'
                          InputStreamControl: 'register'
                         OutputStreamControl: 'register'
                                SetupControl: 'register'
                           ProcessorDataType: 'single'

                     System Level Properties
                              TargetPlatform: 'Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit'
                             TargetFrequency: 200
                               SynthesisTool: 'Xilinx Vivado'
                             ReferenceDesign: 'AXI-Stream DDR Memory Access : 3-AXIM'
                     SynthesisToolChipFamily: 'Zynq UltraScale+'
                     SynthesisToolDeviceName: 'xczu9eg-ffvb1156-2-e'
                    SynthesisToolPackageName: ''
                     SynthesisToolSpeedValue: ''

Create a processor object and a random input array of size 10-by-10-by-5.

hProc = dlhdl.Processor(Network=net,ProcessorConfig=hPC);
im = rand(10,10,5);

Retrieve the padded input data by using the getExpectedPaddedInputData method. The size of the output matrix is 10-by-10-by-8.

output = getExpectedPaddedInputData(hProc,im)

Version History

Introduced in R2023b