This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Getting Started with Deep Learning Toolbox

Create, analyze, and train deep learning networks

Deep Learning Toolbox™ provides a framework for designing and implementing deep neural networks with algorithms, pretrained models, and apps. You can use convolutional neural networks (ConvNets, CNNs) and long short-term memory (LSTM) networks to perform classification and regression on image, time-series, and text data. Apps and plots help you visualize activations, edit network architectures, and monitor training progress.

For small training sets, you can perform transfer learning with pretrained deep network models (including SqueezeNet, Inception-v3, ResNet-101, GoogLeNet, and VGG-19) and models imported from TensorFlow™-Keras and Caffe.

To speed up training on large datasets, you can distribute computations and data across multicore processors and GPUs on the desktop (with Parallel Computing Toolbox™), or scale up to clusters and clouds, including Amazon EC2® P2, P3, and G3 GPU instances (with MATLAB® Parallel Server™).

Tutorials

Shallow Networks

Featured Examples

Online Learning

Deep Learning Onramp
This free, two-hour deep learning tutorial provides an interactive introduction to practical deep learning methods. You will learn to use deep learning techniques in MATLAB for image recognition.

Videos

Interactively Modify a Deep Learning Network for Transfer Learning
Deep Network Designer is a point-and-click tool for creating or modifying deep neural networks. This video shows how to use the app in a transfer learning workflow. It demonstrates the ease with which you can use the tool to modify the last few layers in the imported network as opposed to modifying the layers in the command line. You can check the modified architecture for errors in connections and property assignments using a network analyzer.

Deep Learning with MATLAB: Deep Learning in 11 Lines of MATLAB Code
See how to use MATLAB, a simple webcam, and a deep neural network to identify objects in your surroundings.

Deep Learning with MATLAB: Transfer Learning in 10 Lines of MATLAB Code
Learn how to use transfer learning in MATLAB to re-train deep learning networks created by experts for your own data or task.