Converting from GARCH Functions to Model Objects
In R2014a, arima
, garch
, egarch
, and gjr
models and associated functionality replace the garchfit
, garchinfer
, garchplot
, garchpred
, garchsim
, garchcount
, garchdisp
, garchget
, and garchset
functions. If you use the older GARCH data analysis functions, then you will receive an error. Use the information on this page to help you convert from the older to the newer functionality.
Suppose that you want to analyze a univariate series y
using an ARIMA(3,4) model with GARCH(1,2) innovations, and you have presample observations (y0
), innovations (e0
), and conditional standard deviations (sigma0
). This table shows both ways to complete such an analysis.
Step | Old Functionality | New Functionality |
---|---|---|
Specify a compound ARIMA-GARCH model |
Mdl = garchset('R',3,'M',4,... 'P',1,'Q',2); |
Mdl = arima(3,0,4); VarMdl = garch(1,2); Mdl.Variance = VarMdl; |
Retrieve model properties |
garchget(Mdl,'K') |
Mdl.Variance.Constant |
Set equality constraints |
Mdl = garchset(Mdl,... 'K',0.75,'FixK',1); |
Mdl.Variance.Constant = 0.75; |
Estimate parameters |
EstMdl = garchfit(Mdl,y,[],... e0,sigma0,y0); |
[EstMdl,EstParamCov] = ... estimate(Mdl,y,'E0',e0,... 'V0',sigma0.^2,'Y0',y0) |
Count the number of fitted parameters |
numParams = garchcount(... EstMdl); |
numParams = sum(any(... EstParamCov)); |
Infer conditional variances (sigma2 ) and obtain the loglikelihood (logL ) |
[e,sigma,logL] = ... garchinfer(EstMdl,y,... [],e0,sigma0,y0); sigma2 = sigma.^2; |
[e,sigma2,logL] = infer(... EstMdl,y,'E0',e0,... 'V0',sigma0.^2,'Y0',y0); |
Simulate observations |
simY = garchsim(EstMdl,100); |
simY = simulate(EstMdl,100); |
Filter disturbances |
e = randn(100,1); simY = garchsim(EstMdl,[],... [],e); |
e = randn(100,1); simY = filter(EstMdl,e); |
Forecast observations |
fY = garchpred(EstMdl,y,... 15); |
fY = forecast(EstMdl,15,... 'Y0',y); |
Though similar, the input and output structure of the two functionalities differ in some ways. This example shows how to determine some of the differences between the two, and might help you through the conversion. This example does not show how to reproduce equivalent results between the models, because, in general, the estimates between the two functionalities might differ.
Suppose that you want to analyze a univariate series. You suspect that the model is either an ARIMA(2,1)/GARCH(1,1) or ARIMA(1,1)/GARCH(1,1) model, and want to test which model fits to the data better. Variables representing the new functionality have the suffix 1
(e.g., Mdl1
), and those of the older functionality have suffix 2
(e.g., Mdl2
).
Simulate the data from an ARIMA(2,1) model with GARCH(1,1) innovations.
% New way VarMdl1 = garch('GARCH',0.3,'ARCH',0.2,'Constant',0.75); Mdl1 = arima('AR',{0.5,0.3},'MA',-0.7,'Constant',0,'Variance',VarMdl1); [y1,e1,v1] = simulate(Mdl1,100); % Old way Mdl2 = garchset('AR',[0.5,0.3],'MA',-0.7,'C',0,... 'GARCH',0.3,'ARCH',0.2,'K',0.75); [e2,sd2,y2] = garchsim(Mdl2,100);
The differences are:
Mdl1
is anarima
object, andMdl2
is a structure array.simulate
returns conditional variances, whereasgarchsim
returns conditional standard deviations.With the new functionality, you must:
Specify multiple coefficient values using a cell array.
Specify the variance model using
garch
,egarch
, orgjr
.
Specify template models to use for estimation.
% New way VarMdl1 = garch(1,1); Mdl11 = arima('ARLags',1,'MALags',1,'Variance',VarMdl1); Mdl12 = arima('ARLags',1:2,'MALags',1,'Variance',VarMdl1); % Old way Mdl21 = garchset('R',1,'M',1,'P',1,'Q',1,'Display','off'); Mdl22 = garchset('R',2,'M',1,'P',1,'Q',1,'Display','off');
The new functionality has the name-value pair arguments
'ARLags'
and'MALags'
to set the polynomial terms of the model. You must specify each term order individually, which allows for a more flexible specification. The modelsMdl11
andMdl12
have propertiesP
andQ
corresponding to the autoregressive and moving average orders of the model.Fit each model to the data.
% New way logL1 = [0;0]; % Preallocate numParams1 = logL1; % Preallocate [EstMdl11,EstParamCov11,logl11] = estimate(Mdl11,y1,'Display','off'); [EstMdl12,EstParamCov12,logl12] = estimate(Mdl12,y1,'Display','off'); % Old way logL2 = [0;0]; % Preallocate numParams2 = logL2; % Preallocate [EstMdl21,~,logl12] = garchfit(Mdl21,y2); [EstMdl22,~,logl22] = garchfit(Mdl22,y2);
The
estimate
function:Returns the estimated parameter covariance matrix rather than just the standard errors.
Lets you decide to see estimates and optimization information, rather than setting it when you specify the model.
Count the number of fitted parameters in the estimated model.
% New way numParams11 = sum(any(EstParamCov11)); numParams21 = sum(any(EstParamCov21)); % Old way numParams12 = garchcount(EstMdl12); numParams22 = garchcount(EstMdl22);
The new functionality does not contain a function that counts the number of fitted parameters in an estimated model. However, if a parameter is fixed during estimation, then the software sets all variances and covariances of the corresponding parameter estimate to
0
. The new way to count fitted parameters uses this feature.Assess which model is more appropriate using information criteria.
aic1 = aicbic(logL1,numParams1); aic2 = aicbic(logL2,numParams2);
See Also
Objects
Functions
Related Topics
- Creating Univariate Conditional Mean Models
- Specify Conditional Variance Model for Exchange Rates
- Specify Conditional Mean and Variance Models
- Modify Properties of Conditional Mean Model Objects
- Modify Properties of Conditional Variance Models
- Modify Properties of Conditional Mean Model Objects
- Modify Properties of Conditional Variance Models
- Estimate Conditional Mean and Variance Model
- Infer Residuals for Diagnostic Checking
- Infer Conditional Variances and Residuals
- Simulate GARCH Models
- Forecast a Conditional Variance Model