tunableProperties
Syntax
Description
tps = tunableProperties(filter,AsParameterizedFilter=asParameterized)trackingGSF
        object are parameterized.
Note
Use this syntax only when the filter input is a
              trackingGSF object.
Examples
Create a trackingEKF object.
filter = trackingEKF;
Obtain the tunable properties using the tunableProperties object function.
tps = tunableProperties(filter)
tps = 
Tunable properties for object of type: trackingEKF
Property:      ProcessNoise
   PropertyValue:   [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
   TunedQuantity:   Square root
   IsTuned:         true
       TunedQuantityValue:  [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
       TunableElements:     [1 5 6 9 10 11 13 14 15 16]
       LowerBound:          [0 0 0 0 0 0 0 0 0 0]
       UpperBound:          [10 10 10 10 10 10 10 10 10 10]
Property:      StateCovariance
   PropertyValue:   [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
   TunedQuantity:   Square root of initial value
   IsTuned:         false
Create a trackingUKF object.
filter = trackingUKF;
Obtain the tunable properties using the tunableProperties object function.
tps = tunableProperties(filter)
tps = 
Tunable properties for object of type: trackingUKF
Property:      ProcessNoise
   PropertyValue:   [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
   TunedQuantity:   Square root
   IsTuned:         true
       TunedQuantityValue:  [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
       TunableElements:     [1 5 6 9 10 11 13 14 15 16]
       LowerBound:          [0 0 0 0 0 0 0 0 0 0]
       UpperBound:          [10 10 10 10 10 10 10 10 10 10]
Property:      StateCovariance
   PropertyValue:   [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
   TunedQuantity:   Square root of initial value
   IsTuned:         false
Property:      Alpha
   PropertyValue:   0.001
   TunedQuantity:   Value
   IsTuned:         true
       TunedQuantityValue:  0.001
       TunableElements:     1
       LowerBound:          1e-05
       UpperBound:          1
Property:      Beta
   PropertyValue:   2
   TunedQuantity:   Value
   IsTuned:         false
Property:      Kappa
   PropertyValue:   0
   TunedQuantity:   Value
   IsTuned:         false
Create a trackingIMM object.
filter = trackingIMM;
Obtain the tunable properties using the tunableProperties object function. You can click the links (active in live script) in the display to display the tunable properties of the tracking filters used in the trackingIMM object.
tps = tunableProperties(filter)
tps = 
Tunable properties for object of type: trackingIMM
Property:      TransitionProbabilities
   PropertyValue:   [0.9 0.05 0.05;0.05 0.9 0.05;0.05 0.05 0.9]
   TunedQuantity:   Rows sum to one
   IsTuned:         true
       TunedQuantityValue:  [0.9 0.05 0.05;0.05 0.9 0.05;0.05 0.05 0.9]
       TunableElements:     [1 2 3 4 5 6 7 8 9]
       LowerBound:          [0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001]
       UpperBound:          [1 1 1 1 1 1 1 1 1]
Property:      ModelProbabilities
   PropertyValue:   [0.333333333333333;0.333333333333333;0.333333333333333]
   TunedQuantity:   Columns sum to one
   IsTuned:         true
       TunedQuantityValue:  [0.333333333333333;0.333333333333333;0.333333333333333]
       TunableElements:     [1 2 3]
       LowerBound:          [0.001 0.001 0.001]
       UpperBound:          [1 1 1]
The filter contains 3 tracking filters
   Show tunable properties for filter 1
   Show tunable properties for filter 2
   Show tunable properties for filter 3
Create a trackingGSF object.
filter = trackingGSF
filter = 
  trackingGSF with properties:
                     State: [4×1 double]
           StateCovariance: [4×4 double]
           TrackingFilters: {2×1 cell}
    HasMeasurementWrapping: [0 0]
        ModelProbabilities: [2×1 double]
          MeasurementNoise: [3×3 double]
Obtain the tunable properties using the tunableProperties object function. By default, the function assumes the tracking filters of the trackingGSF object are parameterized and share the same models and process noise. Therefore, only the ProcessNoise property is tunable.
tps1 = tunableProperties(filter)
tps1 = 
Tunable properties for object of type: trackingGSF
Property:      ProcessNoise
   PropertyValue:   [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
   TunedQuantity:   Square root
   IsTuned:         true
       TunedQuantityValue:  [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1]
       TunableElements:     [1 5 6 9 10 11 13 14 15 16]
       LowerBound:          [0 0 0 0 0 0 0 0 0 0]
       UpperBound:          [10 10 10 10 10 10 10 10 10 10]
Set the AsParameterizedFilter argument to false, which allows the tuner to tune each tracking filter individually.
tps2 = tunableProperties(filter,AsParameterizedFilter=false)
tps2 = 
Tunable properties for object of type: trackingGSF
Property:      ModelProbabilities
   PropertyValue:   [0.5;0.5]
   TunedQuantity:   Columns sum to one
   IsTuned:         true
       TunedQuantityValue:  [0.5;0.5]
       TunableElements:     [1 2]
       LowerBound:          [0.001 0.001]
       UpperBound:          [1 1]
The filter contains 2 tracking filters
   Show tunable properties for filter 1
   Show tunable properties for filter 2
Input Arguments
Tracking filter, specified as one of these objects:
Indicate if the tracking filters of the trackingGSF
            object are parameterized, specified as true or
              false.
- true(default) — The- trackingFilterTunerobject treats the tracking filters in the- TrackingFiltersproperty of the- trackingGSFobject as a set of parameterized filters and assumes that these tracking filters have the same target process model. Therefore, the tuner assumes these tracking filters share the same process noise matrix and only tunes this matrix.
- false— The- trackingFilterTunerobject tunes each tracking filter in the- TrackingFiltersproperty of the- trackingGSFobject individually. In this case, the tuner tunes the- ModelProbabilitiesproperty of the- trackingGSFobject and the tunable properties of each tracking filter.
Tip
You can use the setPropertyTunability object function of the tunableFilterProperties object to further custom the tunable properties
                and tunable elements.
Output Arguments
Tunable properties, returned as a tunableFilterProperties object.
Version History
Introduced in R2022b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)