setPropertyTunability
Description
setPropertyTunability(
modifies the tunability of the property tps
,prop
,Name=Value
)prop
of a tracking filter
object, through a tunableFilterProperties
object, tps
, using name-value
arguments. For example,
setPropertyTunability(tps,"StateCovariance",IsTuned=true)
sets the
StateCovariance
property to be tuned through the
tunableFilterProperties
object tps
.
Examples
Obtain and Modify Tunable Properties of trackingEKF
Create a trackingEKF
object using the initcvekf
function.
filter = initcvekf(objectDetection(0,[0;0;0]));
Obtain the tunable properties of the filter using the tunableProperties
object function.
tps = tunableProperties(filter)
tps = Tunable properties for object of type: trackingEKF Property: ProcessNoise PropertyValue: [1 0 0;0 1 0;0 0 1] TunedQuantity: Square root IsTuned: true TunedQuantityValue: [1 0 0;0 1 0;0 0 1] TunableElements: [1 4 5 7 8 9] LowerBound: [0 0 0 0 0 0] UpperBound: [10 10 10 10 10 10] Property: StateCovariance PropertyValue: [1 0 0 0 0 0;0 100 0 0 0 0;0 0 1 0 0 0;0 0 0 100 0 0;0 0 0 0 1 0;0 0 0 0 0 100] TunedQuantity: Square root of initial value IsTuned: false
From the display, the ProcessNoise
property is tuned and the StateCovariance
property is not tuned by default.
Set the StateCovariance
property as tuned.
setPropertyTunability(tps,"StateCovariance",IsTuned=true);
disp(tps);
Tunable properties for object of type: trackingEKF Property: ProcessNoise PropertyValue: [1 0 0;0 1 0;0 0 1] TunedQuantity: Square root IsTuned: true TunedQuantityValue: [1 0 0;0 1 0;0 0 1] TunableElements: [1 4 5 7 8 9] LowerBound: [0 0 0 0 0 0] UpperBound: [10 10 10 10 10 10] Property: StateCovariance PropertyValue: [1 0 0 0 0 0;0 100 0 0 0 0;0 0 1 0 0 0;0 0 0 100 0 0;0 0 0 0 1 0;0 0 0 0 0 100] TunedQuantity: Square root of initial value IsTuned: true TunedQuantityValue: [1 0 0 0 0 0;0 10 0 0 0 0;0 0 1 0 0 0;0 0 0 10 0 0;0 0 0 0 1 0;0 0 0 0 0 10] TunableElements: [1 7 8 13 14 15 19 20 21 22 25 26 27 28 29 31 32 33 34 35 36] LowerBound: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] UpperBound: [100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100]
Set the tuned elements for the process noise matrix as the diagonal elements with specified bounds. Also, set the tuned elements for the state covariance matrix as the diagonal elements with specified bounds.
setPropertyTunability(tps,"ProcessNoise",TunableElements=sub2ind([3,3],[1 2 3],[1 2 3]), ... LowerBound=[0 0 0],UpperBound=[10 10 10]); setPropertyTunability(tps,"StateCovariance",TunableElements=sub2ind([6,6],1:6,1:6), ... LowerBound=zeros(1,6),UpperBound=100*ones(1,6)); disp(tps)
Tunable properties for object of type: trackingEKF Property: ProcessNoise PropertyValue: [1 0 0;0 1 0;0 0 1] TunedQuantity: Square root IsTuned: true TunedQuantityValue: [1 0 0;0 1 0;0 0 1] TunableElements: [1 5 9] LowerBound: [0 0 0] UpperBound: [10 10 10] Property: StateCovariance PropertyValue: [1 0 0 0 0 0;0 100 0 0 0 0;0 0 1 0 0 0;0 0 0 100 0 0;0 0 0 0 1 0;0 0 0 0 0 100] TunedQuantity: Square root of initial value IsTuned: true TunedQuantityValue: [1 0 0 0 0 0;0 10 0 0 0 0;0 0 1 0 0 0;0 0 0 10 0 0;0 0 0 0 1 0;0 0 0 0 0 10] TunableElements: [1 8 15 22 29 36] LowerBound: [0 0 0 0 0 0] UpperBound: [100 100 100 100 100 100]
Obtain and Specify Tunable Properties of trackingIMM
Create a trackingIMM
object using the initekfimm
function.
filter = initekfimm(objectDetection(0,[0;0;0]));
Obtain the tunable properties of the filter using the tuanbleProperties
object function.
tps = tunableProperties(filter)
tps = Tunable properties for object of type: trackingIMM Property: TransitionProbabilities PropertyValue: [0.9 0.05 0.05;0.05 0.9 0.05;0.05 0.05 0.9] TunedQuantity: Rows sum to one IsTuned: true TunedQuantityValue: [0.9 0.05 0.05;0.05 0.9 0.05;0.05 0.05 0.9] TunableElements: [1 2 3 4 5 6 7 8 9] LowerBound: [0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001] UpperBound: [1 1 1 1 1 1 1 1 1] Property: ModelProbabilities PropertyValue: [0.333333333333333;0.333333333333333;0.333333333333333] TunedQuantity: Columns sum to one IsTuned: true TunedQuantityValue: [0.333333333333333;0.333333333333333;0.333333333333333] TunableElements: [1 2 3] LowerBound: [0.001 0.001 0.001] UpperBound: [1 1 1] The filter contains 3 tracking filters Show tunable properties for filter 1 Show tunable properties for filter 2 Show tunable properties for filter 3
Set the ModelProbabilities
property to untuned.
setPropertyTunability(tps,"ModelProbabilities",IsTuned=false);
disp(tps);
Tunable properties for object of type: trackingIMM Property: TransitionProbabilities PropertyValue: [0.9 0.05 0.05;0.05 0.9 0.05;0.05 0.05 0.9] TunedQuantity: Rows sum to one IsTuned: true TunedQuantityValue: [0.9 0.05 0.05;0.05 0.9 0.05;0.05 0.05 0.9] TunableElements: [1 2 3 4 5 6 7 8 9] LowerBound: [0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001] UpperBound: [1 1 1 1 1 1 1 1 1] Property: ModelProbabilities PropertyValue: [0.333333333333333;0.333333333333333;0.333333333333333] TunedQuantity: Columns sum to one IsTuned: false The filter contains 3 tracking filters Show tunable properties for filter 1 Show tunable properties for filter 2 Show tunable properties for filter 3
Set the tuned elements for the process noise matrices in the three trackingEKF
objects. In this example, set the tunable elements as the diagonal elements with specified bounds.
setPropertyTunability(tps,"ProcessNoise",FilterIndex=1,TunableElements=sub2ind([3,3],[1 2 3],[1 2 3]), ... LowerBound=[0 0 0],UpperBound=[10 10 10]); setPropertyTunability(tps,"ProcessNoise",FilterIndex=2,TunableElements=sub2ind([3,3],[1 2 3],[1 2 3]), ... LowerBound=[0 0 0],UpperBound=[10 10 10]); setPropertyTunability(tps,"ProcessNoise",FilterIndex=3,TunableElements=sub2ind([3,3],[1 2 3],[1 2 3]), ... LowerBound=[0 0 0],UpperBound=[10 10 10]);
Input Arguments
tps
— Tunable properties
tunableFilterProperties
Tunable properties, specified as a tunableFilterProperties
object.
prop
— Name of property to tune
string scalar | character vector
Name of property to tune, specified as a string scalar or a character vector of a
valid tunable property name. See the display of the tunableFilterProperties
object, tps
, for a list of
tunable properties.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: setPropertyTunability(tps,"StateCovariance",IsTuned=true)
IsTuned
— Flag to tune property
true
or 1
| false
or 0
Flag to tune property, trackingFilterTuner
, specified as a logical 1
(true
) or 0
(false
).
Data Types: logical
TunableElements
— Tunable elements
N-element vector of indices
Tunable elements in the property, specified as an N-element
vector of indices, where N is the number of tunable elements. Each
index is a column-based index of the property value. For example, if you want to tune
the diagonal elements of a 3-by-3 process noise matrix, specify this property as
[1 5 9]
. The tuner tunes only the specified elements.
Note
If you change the tunable elements, ensure that the
LowerBound
and UpperBound
match the
new elements.
Tip
To generate the indices for elements in a matrix, use the sub2ind
function.
Example: [1 5 9]
LowerBound
— Lower tuning bound
N-element vector of indices
Lower tuning bound of the tunable elements, specified as an N-element vector of scalars, where N is the number of tunable elements.
Example: [0 0 1]
UpperBound
— Upper tuning bound
N-element vector of indices
Upper tuning bound of the tunable elements, specified as n N-element vector of scalars, where N is the number of tunable elements.
Example: [10 10 15]
FilterIndex
— Index of tracking filter when tuning trackingIMM
or trackingGSF
positive integer
Index of tracking filter when tuning a trackingIMM
or trackingGSF
object, specified as a positive integer. The integer must be less than or equal to the
number of tracking filters specified in the TrackingFilters
property of the object. When you specify this argument, the
setPropertyTunability
function modifies the tunability of a property of
the tracking filter corresponding to the index.
Note
You can specify this name-value argument only when you want to modify the tunability of a
trackingIMM
ortrackingGSF
object.To tune individual tracking filters of a
trackingGSF
object, create atunableFilterProperties
object using thetunableProperties
object function and set itsAsParameterizedFilter
argument tofalse
.
Example: 1
Version History
Introduced in R2022b
See Also
tunableProperties
| setTunedProperties
| trackingFilterTuner
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)