cycleGANGenerator
Description
creates a CycleGAN generator network for input of size net
= cycleGANGenerator(inputSize
)inputSize
. For
more information about the network architecture, see CycleGAN Generator Network.
This function requires Deep Learning Toolbox™.
modifies aspects of the CycleGAN network using name-value arguments.net
= cycleGANGenerator(inputSize
,Name=Value
)
Examples
Create CycleGAN Generator
Specify the network input size for RGB images of size 256-by-256.
inputSize = [256 256 3];
Create a CycleGAN generator that generates RGB images of the input size.
net = cycleGANGenerator(inputSize)
net = dlnetwork with properties: Layers: [72x1 nnet.cnn.layer.Layer] Connections: [80x2 table] Learnables: [94x3 table] State: [0x3 table] InputNames: {'inputLayer'} OutputNames: {'fActivation'} Initialized: 1 View summary with summary.
Display the network.
analyzeNetwork(net)
Create CycleGAN Generator with Six Residual Blocks
Specify the network input size for RGB images of size 128-by-128 pixels.
inputSize = [128 128 3];
Create a CycleGAN generator with six residual blocks. Add the prefix "cycleGAN6_" to all layer names.
net = cycleGANGenerator(inputSize,"NumResidualBlocks",6, ... "NamePrefix","cycleGAN6_")
net = dlnetwork with properties: Layers: [54x1 nnet.cnn.layer.Layer] Connections: [59x2 table] Learnables: [70x3 table] State: [0x3 table] InputNames: {'cycleGAN6_inputLayer'} OutputNames: {'cycleGAN6_fActivation'} Initialized: 1 View summary with summary.
Display the network.
analyzeNetwork(net)
Input Arguments
inputSize
— Network input size
3-element vector of positive integers
Network input size, specified as a 3-element vector of positive integers.
inputSize
has the form [H
W
C], where H is the height,
W is the width, and C is the number of
channels.
Example: [28 28 3]
specifies an input size of 28-by-28 pixels for a
3-channel image.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Example: net = cycleGANGenerator(inputSize,NumFiltersInFirstBlock=32)
creates a network with 32 filters in the first convolution layer.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: net =
cycleGANGenerator(inputSize,"NumFiltersInFirstBlock",32)
creates a network with
32 filters in the first convolution layer.
NumDownsamplingBlocks
— Number of downsampling blocks
2
(default) | positive integer
Number of downsampling blocks in the network encoder module, specified as a
positive integer. In total, the network downsamples the input by a factor of
2^NumDownsamplingBlocks
. The decoder module consists of the
same number of upsampling blocks.
NumFiltersInFirstBlock
— Number of filters in first convolution layer
64
(default) | positive even integer
Number of filters in the first convolution layer, specified as a positive even integer.
NumOutputChannels
— Number of output channels
"auto"
(default) | positive integer
Number of output channels, specified as "auto"
or a positive
integer. When you specify "auto"
, the number of output channels is
the same as the number of input channels.
FilterSizeInFirstAndLastBlocks
— Filter size in first and last convolution layers
7
(default) | positive odd integer | 2-element vector of positive odd integers
Filter size in the first and last convolution layers, specified as a positive odd integer or 2-element vector of positive odd integers of the form [height width]. When you specify the filter size as a scalar, the filter has identical height and width.
FilterSizeInIntermediateBlocks
— Filter size in intermediate convolution layers
3
(default) | 2-element vector of positive odd integers | positive odd integer
Filter size in intermediate convolution layers, specified as a positive odd integer or 2-element vector of positive odd integers of the form [height width]. The intermediate convolution layers are the convolution layers excluding the first and last convolution layer. When you specify the filter size as a scalar, the filter has identical height and width. Typical values are between 3 and 7.
NumResidualBlocks
— Number of residual blocks
9
(default) | positive integer
Number of residual blocks, specified as a positive integer. Typically, this value
is set to 6
for images of size 128-by-128 and 9
for images of size 256-by-256 or larger.
ConvolutionPaddingValue
— Style of padding
"symmetric-exclude-edge"
(default) | "replicate"
| "symmetric-include-edge"
| numeric scalar
Style of padding used in the network, specified as one of these values.
PaddingValue | Description | Example |
---|---|---|
Numeric scalar | Pad with the specified numeric value |
|
"symmetric-include-edge" | Pad using mirrored values of the input, including the edge values |
|
"symmetric-exclude-edge" | Pad using mirrored values of the input, excluding the edge values |
|
"replicate" | Pad using repeated border elements of the input |
|
UpsampleMethod
— Method used to upsample activations
"transposedConv"
(default) | "bilinearResize"
| "pixelShuffle"
Method used to upsample activations, specified as one of these values:
"transposedConv"
— Use atransposedConv2dLayer
(Deep Learning Toolbox) with a stride of [2 2]"bilinearResize"
— Use aconvolution2dLayer
(Deep Learning Toolbox) with a stride of [1 1] followed by aresize2dLayer
with a scale of [2 2]"pixelShuffle"
— Use aconvolution2dLayer
(Deep Learning Toolbox) with a stride of [1 1] followed by adepthToSpace2dLayer
with a block size of [2 2]
Data Types: char
| string
ConvolutionWeightsInitializer
— Weight initialization used in convolution layers
"narrow-normal"
(default) | "glorot"
| "he"
| function
Weight initialization used in convolution layers, specified as
"glorot"
, "he"
,
"narrow-normal"
, or a function handle. For more information, see
Specify Custom Weight Initialization Function (Deep Learning Toolbox).
ActivationLayer
— Activation function
"relu"
(default) | "leakyRelu"
| "elu"
| layer object
Activation function to use in the network, specified as one of these values. For more information and a list of available layers, see Activation Layers (Deep Learning Toolbox).
"relu"
— Use areluLayer
(Deep Learning Toolbox)"leakyRelu"
— Use aleakyReluLayer
(Deep Learning Toolbox) with a scale factor of 0.2"elu"
— Use aneluLayer
(Deep Learning Toolbox)A layer object
FinalActivationLayer
— Activation function after final convolution
"tanh"
(default) | "none"
| "sigmoid"
| "softmax"
| layer object
Activation function after the final convolution layer, specified as one of these values. For more information and a list of available layers, see Activation Layers (Deep Learning Toolbox).
"tanh"
— Use atanhLayer
(Deep Learning Toolbox)"sigmoid"
— Use asigmoidLayer
(Deep Learning Toolbox)"softmax"
— Use asoftmaxLayer
(Deep Learning Toolbox)"none"
— Do not use a final activation layerA layer object
NormalizationLayer
— Normalization operation
"instance"
(default) | "none"
| "batch"
| layer object
Normalization operation to use after each convolution, specified as one of these values. For more information and a list of available layers, see Normalization Layers (Deep Learning Toolbox).
"instance"
— Use aninstanceNormalizationLayer
(Deep Learning Toolbox)"batch"
— Use abatchNormalizationLayer
(Deep Learning Toolbox)"none"
— Do not use a normalization layerA layer object
Dropout
— Probability of dropout
0
(default) | number in the range [0, 1]
Probability of dropout, specified as a number in the range [0, 1]. If you specify
a value of 0
, then the network does not include dropout layers. If
you specify a value greater than 0
, then the network includes a
dropoutLayer
(Deep Learning Toolbox)
in each residual block.
NamePrefix
— Prefix to all layer names
""
(default) | string | character vector
Prefix to all layer names in the network, specified as a string or character vector.
Data Types: char
| string
Output Arguments
net
— CycleGAN generator network
dlnetwork
object
CycleGAN generator network, returned as a dlnetwork
(Deep Learning Toolbox) object.
More About
CycleGAN Generator Network
A cycleGAN generator network consists of an encoder module followed by a decoder module. The default network follows the architecture proposed by Zhu et. al. [1].
The encoder module downsamples the input by a factor of
2^NumDownsamplingBlocks
. The encoder module consists of an initial
block of layers, NumDownsamplingBlocks
downsampling blocks, and
NumResidualBlocks
residual blocks. The decoder module upsamples the
input by a factor of 2^NumDownsamplingBlocks
. The decoder module
consists of NumDownsamplingBlocks
upsampling blocks and a final block.
The table describes the blocks of layers that comprise the encoder and decoder modules.
Block Type | Layers | Diagram of Default Block |
---|---|---|
Initial block |
|
|
Downsampling block |
|
|
Residual block |
|
|
Upsampling block |
|
|
Final block |
|
|
References
[1] Zhu, Jun-Yan, Taesung Park, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks." In 2017 IEEE International Conference on Computer Vision (ICCV), 2242–2251. Venice: IEEE, 2017. https://ieeexplore.ieee.org/document/8237506.
[2] Zhu, Jun-Yan, Taesung Park, and Tongzhou Wang. "CycleGAN and pix2pix in PyTorch." https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.
Version History
Introduced in R2021a
See Also
Topics
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)