lidarObjectDetectorTrainingData
Syntax
Description
creates a table of training data from the specified ground truth label data. Use this
training data to train the deep learning networks in Lidar Toolbox™ for lidar object detection.trainingData
= lidarObjectDetectorTrainingData(gTruth
)
[
creates a file datastore and a box label datastore training data from the specified ground
truth label data. To create a datastore for training the network, combine the file and box
label datastores by using ptds
,blds
] = lidarObjectDetectorTrainingData(gTruth
)combine
(ptds
, blds
). Use the combined
datastore to train the deep learning networks in Lidar Toolbox for lidar object detection.
___ = lidarObjectDetectorTrainingData(
uses additional options specified by one or more name-value arguments.gTruth
,Name=Value
)
Examples
Generate Training Data for Point Cloud Object Detection
This example shows how to generate training data to train a deep learning network for point cloud object detection.
Step 1: Create Ground Truth from Data Source
Specify the name of the file containing the point cloud data. The input file is a Velodyne® packet capture (PCAP) file.
sourceName = fullfile(toolboxdir("vision"),"visiondata",... "lidarData_ConstructionRoad.pcap");
Specify the parameters for loading the point cloud sequence from the data source.
sourceParams = struct(); sourceParams.DeviceModel = "HDL32E"; sourceParams.CalibrationFile = fullfile(matlabroot,"toolbox","shared",... "pointclouds","utilities","velodyneFileReaderConfiguration",... "HDL32E.xml");
Load the point cloud data from the specified source file by using the vision.labeler.loading.VelodyneLidarSource
function.
dataSource = vision.labeler.loading.VelodyneLidarSource(); dataSource.loadSource(sourceName,sourceParams);
Define class labels to specify the names of the objects in the input point cloud.
ldc = labelDefinitionCreatorLidar(); addLabel(ldc,"Car","Cuboid"); labelDefs = ldc.create();
Define bounding boxes to specify the location of each object in the point cloud sequence, at each timestamp. Store information about bounding boxes and timestamp to a table.
numPCFrames = numel(dataSource.Timestamp{1}); carData = cell(numPCFrames,1); carData{1} = [1.0223 13.2884 1.1456 8.3114 3.8382 3.1460 0 0 0]; lidarData = timetable(dataSource.Timestamp{1},carData,... VariableNames="Car");
Create ground truth object.
gTruth = groundTruthLidar(dataSource,labelDefs,lidarData);
Step 2: Generate Training Data
Create point cloud and box label datastores from the labeled ground truth by using the lidarObjectDetectorTrainingData
function.
[pcds,bxds] = lidarObjectDetectorTrainingData(gTruth);
Write point cloud extracted for training to folder: /tmp/Bdoc24b_2725827_1669037/tpa4cc45e3/lidar-ex45787688 Writing 1 point clouds extracted from dataSource1...Completed.
Generate training data by combining the point cloud and box label datastores.
trainingData = combine(pcds,bxds);
Step 3: Configure Object Detector
Specify the class names, anchor boxes, point cloud range, and the voxel size. Configure the PointPillars object detector for training and inference.
classNames = "Car"; anchorBoxes = {[1.9,4.5,1.7,-1.78,0; 1.9,4.5,1.7,-1.78,1.57]}; pcRange = [0,69.12,-39.68,39.68,-5,5]; voxSize = [0.16,0.16]; detector = pointPillarsObjectDetector(pcRange,classNames,anchorBoxes,... VoxelSize=voxSize);
Step 4: Train Object Detector
Specify training options.
options = trainingOptions("adam",... Plots="none",... MaxEpochs=2,... MiniBatchSize=1,... GradientDecayFactor=0.9,... SquaredGradientDecayFactor=0.999,... InitialLearnRate=0.0002,... LearnRateDropPeriod=15,... LearnRateDropFactor=0.8,... ExecutionEnvironment="cpu",... DispatchInBackground=false,... BatchNormalizationStatistics="moving",... ResetInputNormalization=false);
Train the PointPillars object detector to detect classes specified in the input training data. You can use the trained detector to detect objects in a test point cloud by using the detect
function.
[detector,info] = trainPointPillarsObjectDetector(trainingData,detector,options);
************************************************************************* Processing data in minibatchqueue.... ************************************************************************* Data processing complete. ************************************************************************* Training a PointPillars Object Detector for the following object classes: * Car Epoch Iteration TimeElapsed LearnRate TrainingLoss _____ _________ ___________ _________ ____________ ************************************************************************* Detector training complete. *************************************************************************
Input Arguments
gTruth
— Lidar ground truth label data
groundTruthLidar
object
Lidar ground truth label data, specified as a groundTruthLidar
object or an
array of groundTruthLidar
objects. To
create ground truth objects from existing ground truth data, use the
groundTruthLidar
object. You can also use the Lidar Labeler app to label a point cloud
and generate the ground truth data.
Note
The lidarObjectDetectorTrainingData
function imports only the ground truth data
with cuboid ROI labels. Ground truth data with other label types are ignored.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: trainingData = lidarObjectDetectorTrainingData(gTruth,
PointCloudFormat='ply')
writes the extracted point clouds to
ply
format.
SamplingFactor
— Factor for subsampling point clouds
auto
(default) | positive integer | vector of positive integers
Factor for subsampling point clouds in the ground truth data source, specified as one of these values:
"auto"
— If the input is agroundTruthLidar
object or an array ofgroundTruthLidar
objects. The function samples data sources with timestamps, such as a point cloud sequence, with a factor of 5. This is the default value.positive integer — If the input is a
groundTruthLidar
object. Uniform sampling factor is applied to all the point cloud samples in the data source.vector of positive integers — If the input is an array of
groundTruthLidar
objects. The k th element in the vector is applied as the sampling factor for data sources in the k th ground truth object in the array.
For a sampling factor of N, the returned training data includes every Nth point cloud sample in the ground truth data source. The function ignores ground truth samples with empty label data.
Use sampled data to reduce repeated data, such as a sequence of point clouds with the same scene and labels. It can also help in reducing training time.
Note
For a sequence of point clouds, set the sampling factor to 1
to create training data with all the point clouds in the input sequence.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| char
| string
WriteLocation
— Name of folder
pwd
(current working folder) (default) | string scalar | character vector
Folder name to write extracted point cloud samples to, specified as a string scalar or character vector. The specified folder must exist and have write permissions.
Use this name-value argument only if the data source in the
groundTruthLidar
object is a
VelodyneLidarSource
, LasFileSequenceSource
,
CustomPointCloudSource
, or RosbagSource
object. You can know this from the DataSource
property of the
groundTruthLidar
object. For other data sources, the
lidarObjectDetectorTrainingData
function ignores this value, if specified.
Data Types: char
| string
PointCloudFormat
— Point cloud file format
pcd
(default) | character vector
Point cloud file format, specified as a character vector. File formats must be
supported by pcwrite
. By default, the function
writes the point cloud to pcd
format.
Use this name-value argument only if the data source in the
groundTruthLidar
object is a
VelodyneLidarSource
, LasFileSequenceSource
,
CustomPointCloudSource
, or RosbagSource
object. You can know this from the DataSource
property of the
groundTruthLidar
object. For other data sources, the
lidarObjectDetectorTrainingData
function ignores this value, if specified.
Data Types: char
NamePrefix
— Prefix for output point cloud file names
string scalar | character vector
Prefix for output point cloud file names, specified as a string scalar or character vector. The point cloud files are named as:
<source_name><source_number>_<pointcloud_number>.<pointcloud_format>
The NamePrefix
parameter sets the value for
<source_name>
. By default, the
<source_name>
is the name of the data source from which the
point clouds are extracted. <source_name>
Use this name-value argument only if the data source in the
groundTruthLidar
object is a
VelodyneLidarSource
, LasFileSequenceSource
,
CustomPointCloudSource
, or RosbagSource
object. You can know this from the DataSource
property of the
groundTruthLidar
object. For other data sources, the
lidarObjectDetectorTrainingData
function ignores this value, if specified.
Data Types: char
| string
Verbose
— Flag to display writing progress
true
or 1 (default) | false
or 0
Flag to display writing progress in the MATLAB® command window, specified as one of these values:
true
or 1 — Displays information about the write progress.false
or 0 — Does not display information about the write progress.
Use this name-value argument only if the data source in the
groundTruthLidar
object is a
VelodyneLidarSource
, LasFileSequenceSource
,
CustomPointCloudSource
, or RosbagSource
object. You can know this from the DataSource
property of the
groundTruthLidar
object. For other data sources, the
lidarObjectDetectorTrainingData
function ignores this value, if specified.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
Output Arguments
trainingData
— Labeled data for training the network
table
Labeled data for training the network, returned as a table with two or more columns. The first column of the table contains point cloud file names with paths. Each of the remaining columns correspond to a cuboid ROI label and contains the locations of bounding boxes in the point cloud sample (specified in the first column), for that label. The bounding boxes are specified as a
M
-by-9 numeric matrix with rows of the form
[xctr, yctr, zctr, xlen, ylen, zlen, xrot, yrot, zrot]
, where:
M
is the number of labels in the frame.xctr
,yctr
, andzctr
specify the center of the cuboid.xlen
,ylen
, andzlen
specify the length of the cuboid along the x-axis, y-axis, and z-axis, respectively, before rotation has been applied.xrot
,yrot
, andzrot
specify the rotation angles for the cuboid along the x-axis, y-axis, and z-axis, respectively. These angles are clockwise-positive when looking in the forward direction of their corresponding axes.
The figure shows how these values determine the position of a cuboid.
Data Types: table
ptds
— Extracted point cloud data
fileDatastore
object
Extracted point cloud data, returned as a fileDatastore
object. The point cloud data must contain at least one class
label. The function ignores unlabeled point cloud data.
blds
— Extracted ROI labels
boxlabelDatastore
object
Extracted ROI labels, returned as a boxLabelDatastore
object. The datastore contains M-by-9 matrices of M bounding boxes and
categorical vectors of cuboid ROI label names.
The bounding boxes are specified as a
M
-by-9 numeric matrix with rows of the form
[xctr, yctr, zctr, xlen, ylen, zlen, xrot, yrot, zrot]
, where:
M
is the number of labels in the frame.xctr
,yctr
, andzctr
specify the center of the cuboid.xlen
,ylen
, andzlen
specify the length of the cuboid along the x-axis, y-axis, and z-axis, respectively, before rotation has been applied.xrot
,yrot
, andzrot
specify the rotation angles for the cuboid along the x-axis, y-axis, and z-axis, respectively. These angles are clockwise-positive when looking in the forward direction of their corresponding axes.
The figure shows how these values determine the position of a cuboid.
Version History
Introduced in R2022a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)