This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

IIP3 Testbench

Measure input third intercept point of system

  • Library:
  • RF Blockset / Circuit Envelope / Testbenches

Description

Use the IIP3 Testbench to measure the input third intercept point (IIP3) of an RF device under test (DUT).

Parameters

expand all

Parameters

Select to use testbench internal configuration block. Clear this parameter to specify your own configuration block.

Note

When using your own configuration block, parameters such as step size, fundamental tones, harmonic order, and simulate noise may affect the measured results.

Select to enable noise modeling in the stimulus signal entering the DUT and inside the DUT.

Dependencies

To enable this parameter, select Use internal Configuration block.

Input power to DUT, specified as a scalar in dBm. You can change the input power by entering the value in the text box or selecting a value using the knob. The specified input power represents the power available at the input ports of the DUT. The valid values are between -90 dBm and 60 dBm

Carrier frequency of the DUT, specified as a scalar in Hz. Input frequency must be greater than baseband bandwidth.

Output frequency of DUT, specified as a scalar in Hz. Output frequency must be greater than baseband bandwidth.

Baseband bandwidth of input signal, specified as a scalar in Hz. The value must be greater than zero.

Position of the test tones, specified as a scalar.

Source resistance to measure DUT, specified as a positive finite scalar in ohms.

Load resistance to measure DUT, specified as a positive finite scalar in ohms.

Select to view response spectrum using a spectrum scope during simulation.

Select to internally ground and hide the negative terminals. Clear to expose the negative terminals. By exposing these terminals, you can connect them to other parts of your model.

References

[1] Razavi, Behzad. RF Microelectronics. Upper Saddle River, NJ: Prentice Hall, 2011.

[2] Grob, Siegfried and, Jurgen Lindner. “Polynomial Model Derivation of Nonlinear Amplifiers”. Department of Information Technology, University of Ulm, Germany.

[3] Kundert, Ken. “Accurate and Rapid Measurements of IP2 and IP3”, Designer's Guide Consulting,Inc..

Introduced in R2018a