MATLAB Classes Definition for Code Generation
To generate efficient standalone code for MATLAB® classes, you must use classes differently than when running your code in the MATLAB environment.
Language Limitations
Although code generation support is provided for common features of classes such as properties and methods, there are a number of advanced features which are not supported, such as:
Events
Listeners
Arrays of objects
Recursive data structures
Linked lists
Trees
Graphs
Nested functions in constructors
Overloadable operators
subsref
,subsassign
, andsubsindex
In MATLAB, classes can define their own versions of the
subsref
,subsassign
, andsubsindex
methods. Code generation does not support classes that have their own definitions of these methods.The
empty
methodIn MATLAB, classes have a built-in static method,
empty
, which creates an empty array of the class. Code generation does not support this method.The following MATLAB handle class methods:
addlistener
eq
findobj
findprop
The
AbortSet
property attribute
Code Generation Features Not Compatible with Classes
You can generate code for entry-point MATLAB functions that use classes, but you cannot generate code directly for a MATLAB class.
For example, if
ClassNameA
is a class definition, you cannot generate code by executing:codegen ClassNameA
A handle class object cannot be an entry-point function input or output.
A value class object can be an entry-point function input or output. However, if a value class object contains a handle class object, then the value class object cannot be an entry-point function input or output. A handle class object cannot be an entry-point function input or output.
Code generation does not support global variables that are handle classes.
Code generation does not support multiple outputs from constructors.
You cannot use classes for Simulink® signals, parameters, or data store memory.
Code generation does not support assigning an object of a value class into a nontunable property. For example,
obj.prop=v;
is invalid whenprop
is a nontunable property andv
is an object based on a value class.You cannot use
coder.extrinsic
to declare a class or method as extrinsic.You cannot pass a MATLAB class to
coder.ceval
. You can pass class properties tocoder.ceval
.If a property has a get method, a set method, or validators, or is a System object™ property with certain attributes, then you cannot pass the property by reference to an external function. See Passing By Reference Not Supported for Some Properties.
If you use classes in code in the MATLAB Function block, you cannot use the debugger to view class information.
If an object has duplicate property names and the code generator tries to constant-fold the object, code generation can fail. The code generator constant-folds an object when it is used with
coder.const
, or when it is an input to or output from a constant-folded extrinsic function.Duplicate property names occur in an object of a subclass in these situations:
The subclass has a property with the same name as a property of the superclass.
The subclass derives from multiple superclasses that use the same name for a property.
Duplicate property names must be consistently constant or non-constant across multiple inheritance related classes. For example, code generation produces an error if an object with a constant property
aProp
inheritsaProp
from a superclass whereaProp
is defined as non-constant.For information about when MATLAB allows duplicate property names, see Subclassing Multiple Classes.
Defining Class Properties for Code Generation
For code generation, you must define class properties differently than you do when running your code in the MATLAB environment:
A property validation error ends a simulation with an error message. To test property validation, it is a best practice to run a simulation over the full range of input values. C/C++ code generated by Simulink Coder™ does not detect or report property validation errors.
After defining a property, do not assign it an incompatible type. Do not use a property before attempting to grow it.
When you define class properties for code generation, consider the same factors that you take into account when defining variables. In the MATLAB language, variables can change their class, size, or complexity dynamically at run time so you can use the same variable to hold a value of varying class, size, or complexity. C and C++ use static typing. Before using variables, to determine their type, the code generator requires a complete assignment to each variable. Similarly, before using properties, you must explicitly define their class, size, and complexity.
Initial values:
If the property does not have an explicit initial value, the code generator assumes that it is undefined at the beginning of the constructor. The code generator does not assign an empty matrix as the default.
If the property does not have an initial value and the code generator cannot determine that the property is assigned prior to first use, the software generates a compilation error.
For System objects, if a nontunable property is a structure, you must completely assign the structure. You cannot do partial assignment using subscripting.
For example, for a nontunable property, you can use the following assignment:
mySystemObject.nonTunableProperty=struct('fieldA','a','fieldB','b');
You cannot use the following partial assignments:
mySystemObject.nonTunableProperty.fieldA = 'a'; mySystemObject.nonTunableProperty.fieldB = 'b';
coder.varsize
is not supported for class properties.If the initial value of a property is an object, then the property must be constant. To make a property constant, declare the
Constant
attribute in the property block. For example:classdef MyClass properties (Constant) p1 = MyClass2; end end
Code generation does not support a constant property that is assigned to an object that contains a System object.
MATLAB computes class initial values at class loading time before code generation. If you use persistent variables in MATLAB class property initialization, the value of the persistent variable computed when the class loads belongs to MATLAB; it is not the value used at code generation time. If you use
coder.target
in MATLAB class property initialization,coder.target('MATLAB')
returnstrue (1)
.
Variable-size properties:
Code generation supports upper-bounded and unbounded variable-size properties for both value and handle classes.
To generate unbounded variable-size class properties, enable dynamic memory allocation.
To make a variable-size class property, make two sequential assignments of a class property, one to a scalar and the next to an array.
classdef varSizeProp1 < handle properties prop varProp end end
function extFunc(n) obj = varSizeProp1; % Assign a scalar value to the property. obj.prop = 1; obj.varProp = 1; % Assign an array to the same property to make it variable-size. obj.prop = 1:98; obj.varProp = 1:n; end
In the preceding code, the first assignment to
prop
andvarProp
is scalar, and their second assignment is to an array with the same base type. The size ofprop
has an upper bound of98
, making it an upper-bounded, variable-size property.If
n
is unknown at compile time,obj.varProp
is an unbounded variable-size property. If it is known, it is an upper-bounded, variable-size class property.If the class property is initialized with a variable-size array, the property is variable-size.
classdef varSizeProp2 properties prop end methods function obj = varSizeProp2(inVar) % Assign incoming value to local variable locVar = inVar; % Declare the local variable to be a variable-size column % vector with no size limit coder.varsize('locVar',[inf 1],[1 0]); % Assign value obj.prop = locVar; end end end
In the preceding code,
inVar
is passed to the class constructor and stored inlocVar
.locVar
is modified to be variable-size bycoder.varsize
and assigned to the class propertyobj.prop
, which makes the property variable-size.If the input to the function call
varSizeProp2
is variable-size,coder.varsize
is not required.function z = constructCall(n) z = varSizeProp2(1:n); end
If the value of
n
is unknown at compile-time and has no specified bounds,z.prop
is an unbounded variable-size class property.If the value of
n
is unknown at compile-time and has specified bounds,z.prop
is an upper-bounded variable-size class property.
If a property is constant and its value is an object, you cannot change the value of a property of that object. For example, suppose that:
obj
is an object ofmyClass1
.myClass1
has a constant propertyp1
that is an object ofmyClass2
.myClass2
has a propertyp2
.
Code generation does not support the following code:
obj.p1.p2 = 1;
Inheritance from Built-In MATLAB Classes Not Supported
You cannot generate code for classes that inherit from built-in MATLAB classes. For example, you cannot generate code for the following class:
classdef myclass < double
An exception to this rule is the MATLAB enumeration class. You can generate code for enumeration classes that inherit from built-in MATLAB classes. See Code Generation for Enumerations (MATLAB Coder).