kfoldLoss
Classification loss for cross-validated ECOC model
Description
returns the classification loss obtained by the cross-validated ECOC model (loss
= kfoldLoss(CVMdl
)ClassificationPartitionedECOC
) CVMdl
. For every
fold, kfoldLoss
computes the classification loss for
validation-fold observations using a model trained on training-fold observations.
CVMdl.X
contains both sets of observations.
returns the classification loss with additional options specified by one or more
name-value pair arguments. For example, specify the number of folds, decoding
scheme, or verbosity level.loss
= kfoldLoss(CVMdl
,Name,Value
)
Examples
Determine k-Fold Cross-Validation Loss
Load Fisher's iris data set. Specify the predictor data X
, the response data Y
, and the order of the classes in Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); % Class order rng(1); % For reproducibility
Train and cross-validate an ECOC model using support vector machine (SVM) binary classifiers. Standardize the predictors using an SVM template, and specify the class order.
t = templateSVM('Standardize',1); CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
CVMdl
is a ClassificationPartitionedECOC
model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold'
name-value pair argument.
Estimate the average classification error.
L = kfoldLoss(CVMdl)
L = 0.0400
The average classification error for the folds is 4%.
Alternatively, you can obtain the per-fold losses by specifying the name-value pair 'Mode','individual'
in kfoldLoss
.
Display Individual Losses for Each Cross-Validation Fold
The classification loss is a measure of classifier quality. To determine which folds perform poorly, display the losses for each fold.
Load Fisher's iris data set. Specify the predictor data X
, the response data Y
, and the order of the classes in Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y); rng(1); % For reproducibility
Train an ECOC model using SVM binary classifiers. Use 8-fold cross-validation, standardize the predictors using an SVM template, and specify the class order.
t = templateSVM('Standardize',1); CVMdl = fitcecoc(X,Y,'KFold',8,'Learners',t,'ClassNames',classOrder);
Estimate the average classification loss across all folds and the losses for each fold.
loss = kfoldLoss(CVMdl)
loss = 0.0333
losses = kfoldLoss(CVMdl,'Mode','individual')
losses = 8×1
0.0556
0.0526
0.1579
0
0
0
0
0
The third fold misclassifies a much higher percentage of observations than any other fold.
Return the average classification loss for the folds that perform well by specifying the 'Folds'
name-value pair argument.
newloss = kfoldLoss(CVMdl,'Folds',[1:2 4:8])
newloss = 0.0153
The total classification loss decreases by approximately half its original size.
Consider adjusting parameters of the binary classifiers or the coding design to see if performance for all folds improves.
Determine ECOC Model Quality Using Custom Cross-Validation Loss
In addition to knowing whether a model generally classifies observations correctly, you can determine how well the model classifies an observation into its predicted class. One way to determine this type of model quality is to pass a custom loss function to kfoldLoss
.
Load Fisher's iris data set. Specify the predictor data X
, the response data Y
, and the order of the classes in Y
.
load fisheriris X = meas; Y = categorical(species); classOrder = unique(Y) % Class order
classOrder = 3x1 categorical
setosa
versicolor
virginica
rng(1) % For reproducibility
Train and cross-validate an ECOC model using SVM binary classifiers. Standardize the predictors using an SVM template, and specify the class order.
t = templateSVM('Standardize',1); CVMdl = fitcecoc(X,Y,'CrossVal','on','Learners',t,'ClassNames',classOrder);
CVMdl
is a ClassificationPartitionedECOC
model. By default, the software implements 10-fold cross-validation. You can specify a different number of folds using the 'KFold'
name-value pair argument.
Create a custom function that takes the minimal loss for each observation, then averages the minimal losses for all observations. S
corresponds to the NegLoss
output of kfoldPredict
.
lossfun = @(~,S,~,~)mean(min(-S,[],2));
Compute the cross-validated custom loss.
kfoldLoss(CVMdl,'LossFun',lossfun)
ans = 0.0152
The average minimal binary loss for the validation-fold observations is 0.0101
.
Input Arguments
CVMdl
— Cross-validated ECOC model
ClassificationPartitionedECOC
model
Cross-validated ECOC model, specified as a ClassificationPartitionedECOC
model. You can create a
ClassificationPartitionedECOC
model in two ways:
Pass a trained ECOC model (
ClassificationECOC
) tocrossval
.Train an ECOC model using
fitcecoc
and specify any one of these cross-validation name-value pair arguments:'CrossVal'
,'CVPartition'
,'Holdout'
,'KFold'
, or'Leaveout'
.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: kfoldLoss(CVMdl,'Folds',[1 3 5])
specifies to use only
the first, third, and fifth folds to calculate the classification
loss.
BinaryLoss
— Binary learner loss function
'hamming'
| 'linear'
| 'logit'
| 'exponential'
| 'binodeviance'
| 'hinge'
| 'quadratic'
| function handle
Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss'
and a built-in loss function name or function handle.
This table describes the built-in functions, where yj is the class label for a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.
Value Description Score Domain g(yj,sj) "binodeviance"
Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/[2log(2)] "exponential"
Exponential (–∞,∞) exp(–yjsj)/2 "hamming"
Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2 "hinge"
Hinge (–∞,∞) max(0,1 – yjsj)/2 "linear"
Linear (–∞,∞) (1 – yjsj)/2 "logit"
Logistic (–∞,∞) log[1 + exp(–yjsj)]/[2log(2)] "quadratic"
Quadratic [0,1] [1 – yj(2sj – 1)]2/2 The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software calculates the mean binary loss for each class [1].
For a custom binary loss function, for example
customFunction
, specify its function handle'BinaryLoss',@customFunction
.customFunction
has this form:bLoss = customFunction(M,s)
M
is the K-by-B coding matrix stored inMdl.CodingMatrix
.s
is the 1-by-B row vector of classification scores.bLoss
is the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.K is the number of classes.
B is the number of binary learners.
For an example of passing a custom binary loss function, see Predict Test-Sample Labels of ECOC Model Using Custom Binary Loss Function.
This table identifies the default BinaryLoss
value, which depends on the
score ranges returned by the binary learners.
Assumption | Default Value |
---|---|
All binary learners are any of the following:
| 'quadratic' |
All binary learners are SVMs. | 'hinge' |
All binary learners are ensembles trained by
AdaboostM1 or
GentleBoost . | 'exponential' |
All binary learners are ensembles trained by
LogitBoost . | 'binodeviance' |
You specify to predict class posterior probabilities by setting
'FitPosterior',true in fitcecoc . | 'quadratic' |
Binary learners are heterogeneous and use different loss functions. | 'hamming' |
To check the default value, use dot notation to display the BinaryLoss
property of the trained model at the command line.
Example: 'BinaryLoss','binodeviance'
Data Types: char
| string
| function_handle
Decoding
— Decoding scheme
'lossweighted'
(default) | 'lossbased'
Decoding scheme that aggregates the binary losses, specified as the comma-separated pair
consisting of 'Decoding'
and 'lossweighted'
or
'lossbased'
. For more information, see Binary Loss.
Example: 'Decoding','lossbased'
Folds
— Fold indices for prediction
1:CVMdl.KFold
(default) | numeric vector of positive integers
Fold indices for prediction, specified as the comma-separated pair consisting of
'Folds'
and a numeric vector of positive integers. The elements
of Folds
must be within the range from 1
to
CVMdl.KFold
.
The software uses only the folds specified in Folds
for
prediction.
Example: 'Folds',[1 4 10]
Data Types: single
| double
LossFun
— Loss function
'classiferror'
(default) | 'classifcost'
| function handle
Loss function, specified as 'classiferror'
,
'classifcost'
, or a function handle.
Specify the built-in function
'classiferror'
. In this case, the loss function is the classification error.Specify the built-in function
'classifcost'
. In this case, the loss function is the observed misclassification cost. If you use the default cost matrix (whose element value is 0 for correct classification and 1 for incorrect classification), then the loss values for'classifcost'
and'classiferror'
are identical.Or, specify your own function using function handle notation.
Assume that n is the number of observations in the training data (
CVMdl.NumObservations
) and K is the number of classes (numel(CVMdl.ClassNames)
). Your function needs the signaturelossvalue =
, where:lossfun
(C,S,W,Cost)The output argument
lossvalue
is a scalar.You specify the function name (
lossfun
).C
is an n-by-K logical matrix with rows indicating the class to which the corresponding observation belongs. The column order corresponds to the class order inCVMdl.ClassNames
.Construct
C
by settingC(p,q) = 1
if observationp
is in classq
, for each row. Set every element of rowp
to0
.S
is an n-by-K numeric matrix of negated loss values for the classes. Each row corresponds to an observation. The column order corresponds to the class order inCVMdl.ClassNames
. The inputS
resembles the output argumentNegLoss
ofkfoldPredict
.W
is an n-by-1 numeric vector of observation weights. If you passW
, the software normalizes its elements to sum to1
.Cost
is a K-by-K numeric matrix of misclassification costs. For example,Cost
=ones(K) – eye(K)
specifies a cost of 0 for correct classification and 1 for misclassification.
Specify your function using
'LossFun',@lossfun
.
Data Types: char
| string
| function_handle
Mode
— Aggregation level for output
'average'
(default) | 'individual'
Aggregation level for the output, specified as the comma-separated pair consisting of
'Mode'
and 'average'
or
'individual'
.
This table describes the values.
Value | Description |
---|---|
'average' | The output is a scalar average over all folds. |
'individual' | The output is a vector of length k containing one value per fold, where k is the number of folds. |
Example: 'Mode','individual'
Options
— Estimation options
[]
(default) | structure array
Estimation options, specified as a structure array as returned by statset
.
To invoke parallel computing you need a Parallel Computing Toolbox™ license.
Example: Options=statset(UseParallel=true)
Data Types: struct
Verbose
— Verbosity level
0
(default) | 1
Verbosity level, specified as 0
or 1
.
Verbose
controls the number of diagnostic messages that the
software displays in the Command Window.
If Verbose
is 0
, then the software does not display
diagnostic messages. Otherwise, the software displays diagnostic messages.
Example: Verbose=1
Data Types: single
| double
Output Arguments
loss
— Classification loss
numeric scalar | numeric column vector
Classification loss, returned as a numeric scalar or numeric column vector.
If Mode
is 'average'
, then
loss
is the average classification loss over all
folds. Otherwise, loss
is a k-by-1
numeric column vector containing the classification loss for each fold,
where k is the number of folds.
More About
Classification Error
The classification error has the form
where:
wj is the weight for observation j. The software renormalizes the weights to sum to 1.
ej = 1 if the predicted class of observation j differs from its true class, and 0 otherwise.
In other words, the classification error is the proportion of observations misclassified by the classifier.
Observed Misclassification Cost
The observed misclassification cost has the form
where:
wj is the weight for observation j. The software renormalizes the weights to sum to 1.
is the user-specified cost of classifying an observation into class when its true class is yj.
Binary Loss
The binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class. The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and determines the predicted class for each observation.
Assume the following:
mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of binary learners.
sj is the score of binary learner j for an observation.
g is the binary loss function.
is the predicted class for the observation.
The software supports two decoding schemes:
Loss-based decoding [2] (
Decoding
is"lossbased"
) — The predicted class of an observation corresponds to the class that produces the minimum average of the binary losses over all binary learners.Loss-weighted decoding [3] (
Decoding
is"lossweighted"
) — The predicted class of an observation corresponds to the class that produces the minimum average of the binary losses over the binary learners for the corresponding class.The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.
The predict
, resubPredict
, and
kfoldPredict
functions return the negated value of the objective
function of argmin
as the second output argument
(NegLoss
) for each observation and class.
This table summarizes the supported binary loss functions, where yj is a class label for a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss function.
Value | Description | Score Domain | g(yj,sj) |
---|---|---|---|
"binodeviance" | Binomial deviance | (–∞,∞) | log[1 + exp(–2yjsj)]/[2log(2)] |
"exponential" | Exponential | (–∞,∞) | exp(–yjsj)/2 |
"hamming" | Hamming | [0,1] or (–∞,∞) | [1 – sign(yjsj)]/2 |
"hinge" | Hinge | (–∞,∞) | max(0,1 – yjsj)/2 |
"linear" | Linear | (–∞,∞) | (1 – yjsj)/2 |
"logit" | Logistic | (–∞,∞) | log[1 + exp(–yjsj)]/[2log(2)] |
"quadratic" | Quadratic | [0,1] | [1 – yj(2sj – 1)]2/2 |
The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the average of the binary learners [1].
Do not confuse the binary loss with the overall classification loss (specified by the
LossFun
name-value argument of the kfoldLoss
and
kfoldPredict
object functions), which measures how well an ECOC
classifier performs as a whole.
References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.
[2] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-correcting output codes.” Pattern Recog. Lett. Vol. 30, Issue 3, 2009, pp. 285–297.
[3] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.
Extended Capabilities
Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.
To run in parallel, specify the Options
name-value argument in the call to
this function and set the UseParallel
field of the
options structure to true
using
statset
:
Options=statset(UseParallel=true)
For more information about parallel computing, see Run MATLAB Functions with Automatic Parallel Support (Parallel Computing Toolbox).
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
This function fully supports GPU arrays. For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).
Version History
Introduced in R2014b
See Also
ClassificationPartitionedECOC
| ClassificationECOC
| kfoldPredict
| fitcecoc
| statset
| loss
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)