besselj
Bessel function of the first kind for symbolic expressions
Syntax
Description
besselj( returns the
Bessel function of the first kind, Jν(z).nu,z)
Examples
Find Bessel Function of First Kind
Compute the Bessel functions of the first kind for these numbers. Because these numbers are floating point, you get floating-point results.
[besselj(0,5) besselj(-1,2) besselj(1/3,7/4) besselj(1,3/2+2*i)]
ans = -0.1776 + 0.0000i -0.5767 + 0.0000i 0.5496 + 0.0000i 1.6113 + 0.3982i
Compute the Bessel functions of the first kind for the numbers converted to symbolic
form. For most symbolic (exact) numbers, besselj returns unresolved
symbolic calls.
[besselj(sym(0),5) besselj(sym(-1),2)... besselj(1/3,sym(7/4)) besselj(sym(1),3/2+2*i)]
ans = [ besselj(0, 5), -besselj(1, 2), besselj(1/3, 7/4), besselj(1, 3/2 + 2i)]
For symbolic variables and expressions, besselj also returns
unresolved symbolic calls.
syms x y [besselj(x,y) besselj(1,x^2) besselj(2,x-y) besselj(x^2,x*y)]
ans = [ besselj(x, y), besselj(1, x^2), besselj(2, x - y), besselj(x^2, x*y)]
Solve Bessel Differential Equation for Bessel Functions
Solve this second-order differential equation. The solutions are the Bessel functions of the first and the second kind.
syms nu w(z) ode = z^2*diff(w,2) + z*diff(w) +(z^2-nu^2)*w == 0; dsolve(ode)
ans = C2*besselj(nu, z) + C3*bessely(nu, z)
Verify that the Bessel function of the first kind is a valid solution of the Bessel differential equation.
cond = subs(ode,w,besselj(nu,z)); isAlways(cond)
ans = logical 1
Special Values of Bessel Function of First Kind
Show that if the first parameter is an odd integer multiplied by 1/2,
besselj rewrites the Bessel functions in terms of elementary
functions.
syms x besselj(1/2,x)
ans = (2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2))
besselj(-1/2,x)
ans = (2^(1/2)*cos(x))/(x^(1/2)*pi^(1/2))
besselj(-3/2,x)
ans = -(2^(1/2)*(sin(x) + cos(x)/x))/(x^(1/2)*pi^(1/2))
besselj(5/2,x)
ans = -(2^(1/2)*((3*cos(x))/x - sin(x)*(3/x^2 - 1)))/(x^(1/2)*pi^(1/2))
Differentiate Bessel Function of First Kind
Differentiate expressions involving the Bessel functions of the first kind.
syms x y diff(besselj(1,x))
ans = besselj(0, x) - besselj(1, x)/x
diff(diff(besselj(0,x^2+x*y-y^2), x), y)
ans = - besselj(1, x^2 + x*y - y^2) -... (2*x + y)*(besselj(0, x^2 + x*y - y^2)*(x - 2*y) -... (besselj(1, x^2 + x*y - y^2)*(x - 2*y))/(x^2 + x*y - y^2))
Find Bessel Function for Matrix Input
Call besselj for the matrix A and the value 1/2.
besselj acts element-wise to return matrix of Bessel
functions.
syms x A = [-1, pi; x, 0]; besselj(1/2, A)
ans = [ (2^(1/2)*sin(1)*1i)/pi^(1/2), 0] [ (2^(1/2)*sin(x))/(x^(1/2)*pi^(1/2)), 0]
Plot Bessel Functions of First Kind
Plot the Bessel functions of the first kind for .
syms x y fplot(besselj(0:3, x)) axis([0 10 -0.5 1.1]) grid on ylabel('J_v(x)') legend('J_0','J_1','J_2','J_3', 'Location','Best') title('Bessel functions of the first kind')

Input Arguments
More About
Tips
Calling
besseljfor a number that is not a symbolic object invokes the MATLAB®besseljfunction.At least one input argument must be a scalar or both arguments must be vectors or matrices of the same size. If one input argument is a scalar and the other one is a vector or a matrix,
besselj(nu,z)expands the scalar into a vector or matrix of the same size as the other argument with all elements equal to that scalar.
References
[1] Olver, F. W. J. “Bessel Functions of Integer Order.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
[2] Antosiewicz, H. A. “Bessel Functions of Fractional Order.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
Version History
Introduced in R2014a