control
Control commands for UAV
Description
returns a structure that captures all the relevant control commands for the specified UAV
guidance model. Use the output of this function to ensure you have the proper fields for
your control. Use the control commands as an input to the controlStruct
= control(uavGuidanceModel
)derivative
function to get the state time-derivative of the UAV.
Examples
Simulate A Multirotor Control Command
This example shows how to use the multirotor
guidance model to simulate the change in state of a UAV due to a command input.
Create the multirotor guidance model.
model = multirotor;
Create a state structure. Specify the location in world coordinates.
s = state(model); s(1:3) = [3;2;1];
Specify a control command, u
, that specified the roll and thrust of the multirotor.
u = control(model); u.Roll = pi/12; u.Thrust = 1;
Create a default environment without wind.
e = environment(model);
Compute the time derivative of the state given the current state, control command, and environment.
sdot = derivative(model,s,u,e);
Simulate the UAV state using ode45
integration. The y
field outputs the multirotor UAV states as a 13-by-n matrix.
simOut = ode45(@(~,x)derivative(model,x,u,e), [0 3], s); size(simOut.y)
ans = 1×2
13 3536
Plot the change in roll angle based on the simulation output. The roll angle (the X Euler angle) is the 9th row of the simOut.y
output.
plot(simOut.y(9,:))
Plot the change in the Y and Z positions. With the specified thrust and roll angle, the multirotor should fly over and lose some altitude. A positive value for Z is expected as positive Z is down.
figure plot(simOut.y(2,:)); hold on plot(simOut.y(3,:)); legend('Y-position','Z-position') hold off
You can also plot the multirotor trajectory using plotTransforms
. Create the translation and rotation vectors from the simulated state. Downsample (every 300th element) and transpose the simOut
elements, and convert the Euler angles to quaternions. Specify the mesh as the multirotor.stl
file and the positive Z-direction as "down"
. The displayed view shows the UAV translating in the Y-direction and losing altitude.
translations = simOut.y(1:3,1:300:end)'; % xyz position rotations = eul2quat(simOut.y(7:9,1:300:end)'); % ZYX Euler plotTransforms(translations,rotations,... 'MeshFilePath','multirotor.stl','InertialZDirection',"down") view([90.00 -0.60])
Simulate A Fixed-Wing Control Command
This example shows how to use the fixedwing
guidance model to simulate the change in state of a UAV due to a command input.
Create the fixed-wing guidance model.
model = fixedwing;
Set the air speed of the vehicle by modifying the structure from the state
function.
s = state(model);
s(4) = 5; % 5 m/s
Specify a control command, u
, that maintains the air speed and gives a roll angle of pi/12
.
u = control(model); u.RollAngle = pi/12; u.AirSpeed = 5;
Create a default environment without wind.
e = environment(model);
Compute the time derivative of the state given the current state, control command, and environment.
sdot = derivative(model,s,u,e);
Simulate the UAV state using ode45
integration. The y
field outputs the fixed-wing UAV states based on this simulation.
simOut = ode45(@(~,x)derivative(model,x,u,e), [0 50], s); size(simOut.y)
ans = 1×2
8 904
Plot the change in roll angle based on the simulation output. The roll angle is the 7th row of the simOut.y
output.
plot(simOut.y(7,:))
You can also plot the fixed-wing trajectory using plotTransforms
. Create the translation and rotation vectors from the simulated state. Downsample (every 30th element) and transpose the simOut
elements, and convert the Euler angles to quaternions. Specify the mesh as the fixedwing.stl
file and the positive Z-direction as "down"
. The displayed view shows the UAV making a constant turn based on the constant roll angle.
downsample = 1:30:size(simOut.y,2); translations = simOut.y(1:3,downsample)'; % xyz-position rotations = eul2quat([simOut.y(5,downsample)',simOut.y(6,downsample)',simOut.y(7,downsample)']); % ZYX Euler plotTransforms(translations,rotations,... 'MeshFilePath','fixedwing.stl','InertialZDirection',"down") hold on plot3(simOut.y(1,:),-simOut.y(2,:),simOut.y(3,:),'--b') % full path xlim([-10.0 10.0]) ylim([-20.0 5.0]) zlim([-0.5 4.00]) view([-45 90]) hold off
Input Arguments
uavGuidanceModel
— UAV guidance model
fixedwing
object | multirotor
object
UAV guidance model, specified as a fixedwing
or
multirotor
object.
Output Arguments
controlStruct
— Control commands for UAV
structure
Control commands for UAV, returned as a structure.
For multirotor UAVs, the guidance model is approximated as separate PD controllers for each command. The elements of the structure are control commands:
Roll
- Roll angle in radians.Pitch
- Pitch angle in radians.YawRate
- Yaw rate in radians per second. (D = 0. P only controller)Thrust
- Vertical thrust of the UAV in Newtons. (D = 0. P only controller)
For fixed-wing UAVs, the model assumes the UAV is flying under the coordinated-turn condition. The guidance model equations assume zero side-slip. The elements of the structure are:
Height
- Altitude above the ground in meters.Airspeed
- UAV speed relative to wind in meters per second.RollAngle
- Roll angle along body forward axis in radians. Because of the coordinated-turn condition, the heading angular rate is based on the roll angle.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Version History
Introduced in R2018b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)