yolov2Layers
Create YOLO v2 object detection network
Syntax
Description
creates a YOLO v2 object detection network and returns it as a lgraph
= yolov2Layers(imageSize
,numClasses
,anchorBoxes
,network
,featureLayer
)LayerGraph
object.
specifies the source of reorganization layer by using a name-value pair. You can specify
this name-value pair to add reorganization layer to the YOLO v2 network architecture.
Specify this argument in addition to the input arguments in the previous syntax.lgraph
= yolov2Layers(___,'ReorgLayerSource',reorgLayer
)
Examples
Input Arguments
Output Arguments
Algorithms
The yolov2Layers
function creates a YOLO v2 network, which represents
the network architecture for YOLO v2 object detector. Use the trainYOLOv2ObjectDetector
function to train the YOLO v2 network for object
detection. The function returns an object that generates the network architecture for YOLO v2
object detection network presented in [1] and [2].
yolov2Layers
uses a pretrained neural network as the base network to
which it adds a detection subnetwork required for creating a YOLO v2 object detection network.
Given a base network, yolov2Layers
removes all the layers succeeding the
feature layer in the base network and adds the detection subnetwork. The detection subnetwork
comprises of groups of serially connected convolution, ReLU, and batch normalization layers.
The YOLO v2 transform layer and YOLO v2 output layer are added to the detection subnetwork. If
you specify the name-value pair 'ReorgLayerSource'
, the YOLO v2 network
concatenates the output of reorganization layer with the output of feature layer.
For information on creating a custom YOLO v2 network layer-by-layer, see Create YOLO v2 Object Detection Network.
References
[1] Joseph. R, S. K. Divvala, R. B. Girshick, and F. Ali. "You Only Look Once: Unified, Real-Time Object Detection." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788. Las Vegas, NV: CVPR, 2016.
[2] Joseph. R and F. Ali. "YOLO 9000: Better, Faster, Stronger." In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. Honolulu, HI: CVPR, 2017.
Extended Capabilities
Version History
Introduced in R2019a
See Also
trainYOLOv2ObjectDetector
| spaceToDepthLayer
| yolov2OutputLayer
| yolov2TransformLayer
| yolov2ObjectDetector
| analyzeNetwork
(Deep Learning Toolbox) | resnet50
(Deep Learning Toolbox)