MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
  Register to watch video
  • Description
  • Related Resources

Development of Integrated Vehicle Safety Applications Through Model-Based Design

Richard Rakes, Autoliv
Siddharth D'Silva, Autoliv

Autoliv is an industry leader in the development and manufacture of automotive safety systems with an enterprise-wide mission of saving lives. For this reason, safety is viewed as a unified domain and not just a collection of individual applications. While production groups work on next-generation environmental sensor technologies like radar and vision, development teams are focused on integrating these functions for enhanced vehicle state estimation and coordinated motion control. The long-term vision is a safety-domain controller for enhanced motion control that is capable of interpreting driver intention and, in conjunction with inertial (e.g., yaw, lat, roll, pitch), environmental (e.g., radar, camera), and peripheral (e.g. high-g impact) sensing, coordinating the control of restraints and vehicle motion through brakes, steering, suspension, and powertrain.

Model-Based Design ensures a disciplined approach to integration from routine tasks such as sensor signal processing and reference model tuning/calibration to more advanced concepts such as sensor fusion, vehicle state estimation, and the generation, arbitration, and distribution of vehicle or specific actuator control. For example, Autoliv’s enhanced Restraints Control Module combines inertial sensing capabilities for stability control with traditional airbag control in a single integrated controller. The improved vehicle state estimates provide invaluable information to the airbag controller, enhancing passenger safety while also enabling auxiliary features such as vehicle stabilization in response to light to moderate impact crash forces.

MATLAB® and Simulink® provided a starting point for concept evaluation. Those concepts were extended and improved through cosimulation with CarSim®, an advanced vehicle dynamics simulation tool. The algorithms were then evaluated in-vehicle using a dSPACE® rapid prototyping ECU. Finally, code was automatically generated from Real-Time Workshop Embedded Coder™ and implemented on a production enhanced Restraints Control Module. Additionally, the production code was subjected to and passed the standard automotive verification and validation procedures before customer release.

Recorded: 4 May 2011

Related Products

  • Simulink

Feedback

Featured Product

Simulink

  • Request Trial
  • Get Pricing

Up Next:

23:02
Using Model-Based Design in Conformance with Safety...

Related Videos:

21:59
Model-Based Design of Safety-Critical Avionics Systems
7:12
Model-Based Design of Safety-Critical Avionics Systems...
11:58
State of Model-Based Design Adoption in the Commercial...
41:36
Optimizing Vehicle Suspension Design through System Level...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

Select web site

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Contact Sales
  • About MathWorks

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

  • Select a Web Site United States
  • Patents
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2021 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation