initcvukf

Create constant-velocity unscented Kalman filter from detection report

Syntax

filter = initcvukf(detection)

Description

example

filter = initcvukf(detection) creates and initializes a constant-velocity unscented Kalman filter from information contained in a detection report. For more information about the unscented Kalman filter, see trackingUKF.

Examples

collapse all

Create and initialize a 3-D constant-velocity unscented Kalman filter object from an initial detection report.

Create the detection report from an initial 3-D measurement, (10,200,−5), of the object position.

detection = objectDetection(0,[10;200;-5],'MeasurementNoise',1.5*eye(3), ...
    'SensorIndex',1,'ObjectClassID',1,'ObjectAttributes',{'Sports Car',5});

Create the new filter from the detection report and display the filter properties.

filter = initcvukf(detection)
filter = 
  trackingUKF with properties:

                          State: [6x1 double]
                StateCovariance: [6x6 double]

             StateTransitionFcn: @constvel
                   ProcessNoise: [3x3 double]
        HasAdditiveProcessNoise: 0

                 MeasurementFcn: @cvmeas
               MeasurementNoise: [3x3 double]
    HasAdditiveMeasurementNoise: 1

                          Alpha: 1.0000e-03
                           Beta: 2
                          Kappa: 0

Display the state.

filter.State
ans = 6×1

    10
     0
   200
     0
    -5
     0

Show the state covariance.

filter.StateCovariance
ans = 6×6

    1.5000         0         0         0         0         0
         0  100.0000         0         0         0         0
         0         0    1.5000         0         0         0
         0         0         0  100.0000         0         0
         0         0         0         0    1.5000         0
         0         0         0         0         0  100.0000

Initialize a constant-velocity unscented Kalman filter from an initial detection report made from an initial measurement in spherical coordinates. Because the object lies in the x-y plane, no elevation measurement is made. If you want to use spherical coordinates, then you must supply a measurement parameter structure as part of the detection report with the Frame field set to 'spherical'. Set the azimuth angle of the target to 45 degrees, the range to 1000 meters, and the range rate to -4.0 m/s.

frame = 'spherical';
sensorpos = [25,-40,0].';
sensorvel = [0;5;0];
laxes = eye(3);

Create the measurement parameters structure. Set 'HasElevation' to false. Then, the measurement consists of azimuth, range, and range rate.

measparms = struct('Frame',frame,'OriginPosition',sensorpos, ...
    'OriginVelocity',sensorvel,'Orientation',laxes,'HasVelocity',true, ...
    'HasElevation',false);
meas = [45;1000;-4];
measnoise = diag([3.0,2,1.0].^2);
detection = objectDetection(0,meas,'MeasurementNoise', ...
    measnoise,'MeasurementParameters',measparms)
detection = 
  objectDetection with properties:

                     Time: 0
              Measurement: [3x1 double]
         MeasurementNoise: [3x3 double]
              SensorIndex: 1
            ObjectClassID: 0
    MeasurementParameters: [1x1 struct]
         ObjectAttributes: {}

filter = initcvukf(detection);

Display filter state vector.

disp(filter.State)
  732.1068
   -2.8284
  667.1068
    2.1716
         0
         0

Input Arguments

collapse all

Detection report, specified as an objectDetection object.

Example: detection = objectDetection(0,[1;4.5;3],'MeasurementNoise', [1.0 0 0; 0 2.0 0; 0 0 1.5])

Output Arguments

collapse all

Unscented Kalman filter, returned as a trackingUKF object.

Algorithms

  • The function computes the process noise matrix assuming a one-second time step and an acceleration standard deviation of 1 m/s2.

  • You can use this function as the FilterInitializationFcn property of a trackerGNN or trackerTOMHT object.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Introduced in R2018b