Main Content

frenet2cart

Convert Frenet states to Cartesian states

Description

frenet2cart(planner,frenetStates) converts a six-element vector of frenetStates [s, ds/dt, d2s/dt2, l, dl/ds, d2l/ds2] to a six-element vector of Cartesian states [x, y, theta, kappa, speed, acceleration].

example

Examples

collapse all

This example shows how to plan an optimal trajectory using a trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap;

Create an obstacle grid map.

grid = zeros(50,100);
grid(24:26,48:53) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;100,25];

Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.

planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -10:5:10;
planner.FeasibilityParameters.MaxAcceleration = 10;

Specify the deviation offset value close to the left lateral terminal state to prioritize left lane changes.

planner.DeviationOffset = 5;

Trajectory Planning

Initial cartesian state of vehicle.

initCartState = [0 25 pi/9 0 0 0];

Convert cartesian state of vehicle to Frenet state.

initFrenetState = cart2frenet(planner,initCartState);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.

show(map)
hold on
show(planner,'Trajectory','all')

Figure contains an axes object. The axes object with title Binary Occupancy Grid, xlabel X [meters], ylabel Y [meters] contains 5 objects of type image, line, patch. One or more of the lines displays its values using only markers These objects represent Waypoints, Reference Path, Optimal Trajectory.

This example shows how to partition the longitudinal terminal states in optimal trajectory planning using a trajectoryOptimalFrenet object.

Create and Assign Map to State Validator

Create a state validator object for collision checking.

stateValidator = validatorOccupancyMap; 

Create an obstacle grid map.

grid = zeros(50,100);
grid(25:27,28:33) = 1;
grid(16:18,37:42) = 1;
grid(29:31,72:77) = 1;

Create a binaryOccupancyMap with the grid map.

map = binaryOccupancyMap(grid);

Assign the map and the state bounds to the state validator.

stateValidator.Map = map;
stateValidator.StateSpace.StateBounds(1:2,:) = [map.XWorldLimits; map.YWorldLimits];

Plan and Visualize Trajectory

Create a reference path for the planner to follow.

refPath = [0,25;30,30;75,20;100,25];

Initialize the planner object with the reference path, and the state validator.

planner = trajectoryOptimalFrenet(refPath,stateValidator);

Assign longitudinal terminal state, lateral deviation, and maximum acceleration values.

planner.TerminalStates.Longitudinal = 100;
planner.TerminalStates.Lateral = -5:5:5;
planner.FeasibilityParameters.MaxAcceleration = 10;

Assign the number of partitions for the longitudinal terminal state.

planner.NumSegments = 3;

Trajectory Planning

Initial Frenet state of vehicle.

initFrenetState = zeros(1,6);

Plan a trajectory from initial Frenet state.

plan(planner,initFrenetState);

Trajectory Visualization

Visualize the map and the trajectories.

show(map)
hold on
show(planner,'Trajectory','all')
hold on

Generate Lane Boundaries

Calculate end of reference path as Frenet state.

refPathEnd = cart2frenet(planner,[planner.Waypoints(end,:) 0 0 0 0]);

Calculate lane offsets on both sides of the lateral terminal states with half lane width value.

laneOffsets = unique([planner.TerminalStates.Lateral+2.5 planner.TerminalStates.Lateral-2.5]);

Calculate positions of lanes in Cartesian state.

numLaneOffsets = numel(laneOffsets);
xRefPathEnd = ceil(refPathEnd(1));
laneXY = zeros((numLaneOffsets*xRefPathEnd)+numLaneOffsets,2);
xIndex = 0;

for laneID = 1:numLaneOffsets
    for x = 1:xRefPathEnd
        laneCart = frenet2cart(planner,[x 0 0 laneOffsets(laneID) 0 0]);
        xIndex = xIndex + 1;
        laneXY(xIndex,:) = laneCart(1:2);
    end
    xIndex = xIndex + 1;
    laneXY(xIndex,:) = NaN(1,2);
end

Plot lane boundaries.

plot(laneXY(:,1),laneXY(:,2),'LineWidth',0.5,'Color',[0.5 0.5 0.5],'DisplayName','Lane Boundaries','LineStyle','--')

Figure contains an axes object. The axes object with title Binary Occupancy Grid, xlabel X [meters], ylabel Y [meters] contains 6 objects of type image, line, patch. One or more of the lines displays its values using only markers These objects represent Waypoints, Reference Path, Optimal Trajectory, Lane Boundaries.

Input Arguments

collapse all

Optimal trajectory planner in Frenet space, specified as a trajectoryOptimalFrenet object.

Vector of Frenet states, specified as a 1-by-6 vector, [s, ds/dt, d2s/dt2, l, dl/ds, d2l/ds2].

  • s specifies the arc length from the first point in reference path in meters.

  • ds/dt specifies the first derivative of arc length.

  • d2s/dt2 specifies the second derivative of arc length.

  • l specifies the normal distance from the closest point in the reference path in meters.

  • dl/ds specifies the first derivative of normal distance.

  • d2l/ds2 specifies the second derivative of normal distance.

Example: [10 1 0 3 0 0]

Data Types: double

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Version History

Introduced in R2019b