selectFeatures
Syntax
Description
returns indices of selected predictors for the number of important features specified by
idx
= selectFeatures(mdl
,NumFeatures=numfeatures
)numfeatures
.
returns indices of selected predictors with feature weights greater than or equal to the
threshold specified by idx
= selectFeatures(mdl
,MaxWeightFraction=maxweightfraction
)maxweightfraction
.
Examples
Find Important Features in Data Using NCA for Classification
Generate data where the response variable depends on the 3rd, 9th, and 15th predictors.
rng(0,"twister"); % For reproducibility N = 100; X = rand(N,20); y = -ones(N,1); y(X(:,3).*X(:,9)./X(:,15) < 0.4) = 1;
Fit the NCA model for classification.
mdl = fscnca(X,y,Solver="sgd",Verbose=1);
o Tuning initial learning rate: NumTuningIterations = 20, TuningSubsetSize = 100 |===============================================| | TUNING | TUNING SUBSET | LEARNING | | ITER | FUN VALUE | RATE | |===============================================| | 1 | -3.755936e-01 | 2.000000e-01 | | 2 | -3.950971e-01 | 4.000000e-01 | | 3 | -4.311848e-01 | 8.000000e-01 | | 4 | -4.903195e-01 | 1.600000e+00 | | 5 | -5.630190e-01 | 3.200000e+00 | | 6 | -6.166993e-01 | 6.400000e+00 | | 7 | -6.255669e-01 | 1.280000e+01 | | 8 | -6.255669e-01 | 1.280000e+01 | | 9 | -6.255669e-01 | 1.280000e+01 | | 10 | -6.255669e-01 | 1.280000e+01 | | 11 | -6.255669e-01 | 1.280000e+01 | | 12 | -6.255669e-01 | 1.280000e+01 | | 13 | -6.255669e-01 | 1.280000e+01 | | 14 | -6.279210e-01 | 2.560000e+01 | | 15 | -6.279210e-01 | 2.560000e+01 | | 16 | -6.279210e-01 | 2.560000e+01 | | 17 | -6.279210e-01 | 2.560000e+01 | | 18 | -6.279210e-01 | 2.560000e+01 | | 19 | -6.279210e-01 | 2.560000e+01 | | 20 | -6.279210e-01 | 2.560000e+01 | o Solver = SGD, MiniBatchSize = 10, PassLimit = 5 |==========================================================================================| | PASS | ITER | AVG MINIBATCH | AVG MINIBATCH | NORM STEP | LEARNING | | | | FUN VALUE | NORM GRAD | | RATE | |==========================================================================================| | 0 | 9 | -5.658450e-01 | 4.492407e-02 | 9.290605e-01 | 2.560000e+01 | | 1 | 19 | -6.131382e-01 | 4.923625e-02 | 7.421541e-01 | 1.280000e+01 | | 2 | 29 | -6.225056e-01 | 3.738784e-02 | 3.277588e-01 | 8.533333e+00 | | 3 | 39 | -6.233366e-01 | 4.947901e-02 | 5.431133e-01 | 6.400000e+00 | | 4 | 49 | -6.238576e-01 | 3.445763e-02 | 2.946188e-01 | 5.120000e+00 | Two norm of the final step = 2.946e-01 Relative two norm of the final step = 6.588e-02, TolX = 1.000e-06 EXIT: Iteration or pass limit reached.
Plot the selected features. The weights of the irrelevant features are close to zero.
figure() plot(mdl.FeatureWeights,"ro") grid on xlabel("Feature Index") ylabel("Feature Weight")
Sort all predictors according to their feature weights.
idx = selectFeatures(mdl); mdl.PredictorNames(idx).'
ans = 20x1 cell
{'x15'}
{'x3' }
{'x9' }
{'x16'}
{'x10'}
{'x13'}
{'x2' }
{'x18'}
{'x17'}
{'x12'}
{'x14'}
{'x8' }
{'x4' }
{'x11'}
{'x19'}
{'x20'}
{'x6' }
{'x5' }
{'x7' }
{'x1' }
mdl.FeatureWeights(idx)
ans = 20×1
2.5197
2.2613
2.1424
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
⋮
Select five predictors with the largest feature weights.
idx = selectFeatures(mdl,NumFeatures=5); mdl.PredictorNames(idx).'
ans = 5x1 cell
{'x15'}
{'x3' }
{'x9' }
{'x16'}
{'x10'}
Select predictors with feature weights greater than or equal to the threshold defined by maxweightfraction
.
idx = selectFeatures(mdl,MaxWeightFraction=0.4); mdl.PredictorNames(idx).'
ans = 3x1 cell
{'x15'}
{'x3' }
{'x9' }
Find Important Features in Data Using NCA for Regression
Generate data where the response variable depends on the 3rd, 9th, and 15th predictors.
rng(0,"twister"); % For reproducibility N = 100; X = rand(N,20); y = 1 + X(:,3)*5 + sin(X(:,9)./X(:,15) + 0.25*randn(N,1));
Fit the NCA model for regression.
mdl = fsrnca(X,y,Solver="lbfgs",Verbose=1,Lambda=0.5/N);
o Solver = LBFGS, HessianHistorySize = 15, LineSearchMethod = weakwolfe |====================================================================================================| | ITER | FUN VALUE | NORM GRAD | NORM STEP | CURV | GAMMA | ALPHA | ACCEPT | |====================================================================================================| | 0 | 1.636932e+00 | 3.688e-01 | 0.000e+00 | | 1.627e+00 | 0.000e+00 | YES | | 1 | 8.304833e-01 | 1.083e-01 | 2.449e+00 | OK | 9.194e+00 | 4.000e+00 | YES | | 2 | 7.548105e-01 | 1.341e-02 | 1.164e+00 | OK | 1.095e+01 | 1.000e+00 | YES | | 3 | 7.346997e-01 | 9.752e-03 | 6.383e-01 | OK | 2.979e+01 | 1.000e+00 | YES | | 4 | 7.053407e-01 | 1.605e-02 | 1.712e+00 | OK | 5.809e+01 | 1.000e+00 | YES | | 5 | 6.970502e-01 | 9.106e-03 | 8.818e-01 | OK | 6.223e+01 | 1.000e+00 | YES | | 6 | 6.952347e-01 | 5.522e-03 | 6.382e-01 | OK | 3.280e+01 | 1.000e+00 | YES | | 7 | 6.946302e-01 | 9.102e-04 | 1.952e-01 | OK | 3.380e+01 | 1.000e+00 | YES | | 8 | 6.945037e-01 | 6.557e-04 | 9.942e-02 | OK | 8.490e+01 | 1.000e+00 | YES | | 9 | 6.943908e-01 | 1.997e-04 | 1.756e-01 | OK | 1.124e+02 | 1.000e+00 | YES | | 10 | 6.943785e-01 | 3.478e-04 | 7.755e-02 | OK | 7.621e+01 | 1.000e+00 | YES | | 11 | 6.943728e-01 | 1.428e-04 | 3.416e-02 | OK | 3.649e+01 | 1.000e+00 | YES | | 12 | 6.943711e-01 | 1.128e-04 | 1.231e-02 | OK | 6.092e+01 | 1.000e+00 | YES | | 13 | 6.943688e-01 | 1.066e-04 | 2.326e-02 | OK | 9.319e+01 | 1.000e+00 | YES | | 14 | 6.943655e-01 | 9.324e-05 | 4.399e-02 | OK | 1.810e+02 | 1.000e+00 | YES | | 15 | 6.943603e-01 | 1.206e-04 | 8.823e-02 | OK | 4.609e+02 | 1.000e+00 | YES | | 16 | 6.943582e-01 | 1.701e-04 | 6.669e-02 | OK | 8.425e+01 | 5.000e-01 | YES | | 17 | 6.943552e-01 | 5.160e-05 | 6.473e-02 | OK | 8.832e+01 | 1.000e+00 | YES | | 18 | 6.943546e-01 | 2.477e-05 | 1.215e-02 | OK | 7.925e+01 | 1.000e+00 | YES | | 19 | 6.943546e-01 | 1.077e-05 | 6.086e-03 | OK | 1.378e+02 | 1.000e+00 | YES | |====================================================================================================| | ITER | FUN VALUE | NORM GRAD | NORM STEP | CURV | GAMMA | ALPHA | ACCEPT | |====================================================================================================| | 20 | 6.943545e-01 | 2.260e-05 | 4.071e-03 | OK | 5.856e+01 | 1.000e+00 | YES | | 21 | 6.943545e-01 | 4.250e-06 | 1.109e-03 | OK | 2.964e+01 | 1.000e+00 | YES | | 22 | 6.943545e-01 | 1.916e-06 | 8.356e-04 | OK | 8.649e+01 | 1.000e+00 | YES | | 23 | 6.943545e-01 | 1.083e-06 | 5.270e-04 | OK | 1.168e+02 | 1.000e+00 | YES | | 24 | 6.943545e-01 | 1.791e-06 | 2.673e-04 | OK | 4.016e+01 | 1.000e+00 | YES | | 25 | 6.943545e-01 | 2.596e-07 | 1.111e-04 | OK | 3.154e+01 | 1.000e+00 | YES | Infinity norm of the final gradient = 2.596e-07 Two norm of the final step = 1.111e-04, TolX = 1.000e-06 Relative infinity norm of the final gradient = 2.596e-07, TolFun = 1.000e-06 EXIT: Local minimum found.
Plot the selected features. The weights of the irrelevant features are close to zero.
figure; plot(mdl.FeatureWeights,"ro"); grid on; xlabel("Feature Index"); ylabel("Feature Weight");
Sort all predictors according to their feature weights.
idx = selectFeatures(mdl); mdl.PredictorNames(idx).'
ans = 20x1 cell
{'x3' }
{'x9' }
{'x15'}
{'x8' }
{'x18'}
{'x17'}
{'x13'}
{'x6' }
{'x16'}
{'x5' }
{'x4' }
{'x20'}
{'x10'}
{'x1' }
{'x11'}
{'x2' }
{'x12'}
{'x19'}
{'x7' }
{'x14'}
mdl.FeatureWeights(idx)
ans = 20×1
4.7140
2.0046
1.5471
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
⋮
Select five predictors with the largest feature weights.
idx = selectFeatures(mdl,NumFeatures=5); mdl.PredictorNames(idx).'
ans = 5x1 cell
{'x3' }
{'x9' }
{'x15'}
{'x8' }
{'x18'}
Select predictors with feature weights greater than or equal to the threshold defined by maxweightfraction
.
idx = selectFeatures(mdl,MaxWeightFraction=0.4); mdl.PredictorNames(idx).'
ans = 2x1 cell
{'x3'}
{'x9'}
Input Arguments
mdl
— Neighborhood component analysis (NCA) model for classification or regression
FeatureSelectionNCAClassification
object | FeatureSelectionNCARegression
object
Neighborhood component analysis (NCA) model for classification or regression,
specified as a FeatureSelectionNCAClassification
object or a
FeatureSelectionNCARegression
object.
numfeatures
— Number of important features
number of predictors (default) | positive integer
Number of important features, specified as a positive integer.
Example: 10
Data Types: double
maxweightfraction
— Fraction for computing threshold on feature weights
[]
(default) | real value in the range [0,1]
Fraction for computing the threshold on the feature weights, specified as a real
value in the range [0,1]
. This value determines the threshold as
follows:
threshold = maxweightfraction*max(1,max(mdl.FeatureWeights))
selectFeatures
returns features with weights greater than or
equal to the threshold.
Example: 0.5
Data Types: double
Output Arguments
idx
— Indices of selected predictors
numeric vector
Indices of selected predictors, returned as a numeric vector.
Version History
Introduced in R2023b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)