perObservationLoss
Description
specifies additional options using one or more Err
= perObservationLoss(Mdl
,X
,Y
,Name=Value
)Name=Value
arguments.
Examples
Compute per Observation Loss for Incremental Regression Model
Load the robot arm data set. Obtain the sample size n
and the number of predictor variables p
.
load robotarm
n = numel(ytrain);
p = size(Xtrain,2);
For details on the data set, enter Description
at the command line.
Create an incremental linear model for regression. Configure the model as follows:
Specify a metrics warm-up period of 1000 observations.
Specify a metrics window size of 500 observations.
Configure the model to predict responses by specifying that all regression coefficients and the bias are 0.
Mdl = incrementalRegressionLinear('MetricsWarmupPeriod',1000,'MetricsWindowSize',500,... 'Beta',zeros(p,1),'Bias',0,'EstimationPeriod',0)
Mdl = incrementalRegressionLinear IsWarm: 0 Metrics: [1x2 table] ResponseTransform: 'none' Beta: [32x1 double] Bias: 0 Learner: 'svm'
Mdl
is an incrementalRegressionLinear
model object configured for incremental learning. All properties are read-only.
Preallocate the number of variables in each chunk for creating a stream of data and variables to store the performance metrics.
numObsPerChunk = 50; nchunk = floor(n/numObsPerChunk); L = zeros(nchunk,1); % To store loss values PoL = zeros(nchunk,50); % To store per observation loss values
Simulate a data stream with incoming chunks of 50 observations each. For each iteration:
Call
updateMetricsandFit
to measure the cumulative performance and the performance within a window of observations and fit the model to the incoming data. Overwrite the previous incremental model with the new one.Call
loss
to compute the mean squared error on the incoming data andperObservationLoss
to compute the squared error for each observation and store the performance metrics.
for j = 1:nchunk ibegin = min(n,numObsPerChunk*(j-1) + 1); iend = min(n,numObsPerChunk*j); idx = ibegin:iend; Mdl = updateMetricsAndFit(Mdl,Xtrain(idx,:),ytrain(idx)); L(j) = loss(Mdl,Xtrain(idx,:),ytrain(idx)); PoL(j,:) = perObservationLoss(Mdl,Xtrain(idx,:),ytrain(idx)); end
PerObservationLoss
computes the regression loss (squared error) for each observation in each chunk of data after the warm up period (after IsWarm
property is 1 (or true
)). PoL
is an nchunk
-by-numObsPerChunk
matrix, which, in this example corresponds to a 143-by-50 matrix. Each row corresponds to a window of observation in the stream and each column corresponds to an observation in the corresponding window. The default warmup period is 1000 observations, which corresponds to 20 chunks of incoming data. Hence, first 19 rows of PoL
only has NaN
values. loss
starts computing the mean squared error for each window of data, whether the model is warm or not, so computes the regression error for the first 19 chunks as well. L
is a 143-by-1 vector. Each value in L
corresponds to the mean of the squared error values in each row of PoL
.
Compute the difference between L
and the row mean of PoL
, and display the values 20 to 25.
diff = abs(L-mean(PoL,2)); diff(20:25)
ans = 6×1
10-15 ×
0.2220
0
0.2220
0.1110
0.1110
0.2220
The difference between the two vectors is negligible.
Input Arguments
Mdl
— Incremental learning model
incrementalRegressionLinear
model object | incrementalRegressionKernel
model object
Incremental learning model, specified as an incrementalRegressionKernel
or incrementalRegressionLinear
model object. You can create
Mdl
directly or by converting a supported, traditionally trained
machine learning model using the incrementalLearner
function. For
more details, see the corresponding reference page.
X
— Batch of predictor data
floating-point matrix
Batch of predictor data with which to compute the per observation loss, specified as
a floating-point matrix of n observations and
Mdl.NumPredictors
predictor variables. The value of the
ObservationsIn
name-value argument determines the orientation of
the variables and observations.
The length of the observation labels Y
and the number of observations in X
must be equal; Y(
is the label of observation j (row or column) in j
)X
.
Note
perObservationLoss
supports only floating-point
input predictor data. If your input data includes categorical data, you must prepare an encoded
version of the categorical data. Use dummyvar
to convert each categorical variable
to a numeric matrix of dummy variables. Then, concatenate all dummy variable matrices and any
other numeric predictors. For more details, see Dummy Variables.
Data Types: single
| double
Y
— Batch of responses
floating-point vector
Batch of responses with which to compute the per observation loss, specified as a floating-point vector.
The length of Y
and the number of observations in
X
must be equal; Y(
is the response for observation j (row or column) in
j
)X
.
Data Types: single
| double
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Example: ObservationsIn="columns",LossFun="epsiloninsensitive"
specifies that the observations are in columns and the loss function is the built-in epsilon
insensitive loss.
ObservationsIn
— Orientation of data in X
"rows"
(default) | "columns"
Orientation of data in X
, specified as either
"rows"
or "columns"
.
Example: ObservationsIn="columns"
LossFun
— Loss function
"squarederror"
(default) | "epsiloninsensitive"
| function handle
Loss function, specified as a built-in loss function name or function handle.
Available built-in loss functions for regression are
"squarederror"
or "epsiloninsensitive"
.
To specify a custom loss function, use function handle notation. The function must have this form:
lossval = lossfcn(Y,YFit)
The output argument
lossval
is a floating-point scalar.You specify the function name (
).lossfcn
Y
is a length n numeric vector of observed responses.YFit
is a length n numeric vector of corresponding predicted responses.
Example: LossFun="epsiloninsensitive"
Example: LossFun=@
lossfcn
Data Types: char
| string
| function_handle
Version History
Introduced in R2022a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)