Per Observation Loss
Per observation regression or classification error of incremental model
Since R2025a

Libraries:
Statistics and Machine Learning Toolbox /
Incremental Learning /
Drift Detection
Description
The Per Observation Loss block outputs the per observation regression or classification error of a configured incremental model, given predictor data x and ground-truth responses (labels) y.
Import a trained incremental learning or incremental drift-aware model object into the block by specifying the name of a workspace variable that contains the object. The input port mdl receives a bus signal that represents an incremental learning model fit to streaming data. The input port x receives a chunk of predictor data (observations), and the input port y receives a chunk of responses or labels for measuring the model loss. The output port IsWarm returns a value indicating if the model is warm, which means that it is computing the loss. The output port loss returns the computed loss.
Examples
Load the human activity data set and randomly shuffle the observations. For details on the data set, enter Description
at the command line.
load humanactivity n = numel(actid); rng(0,"twister") % For reproducibility idx = randsample(n,n); X = feat(idx,:); Y = actid(idx);
Responses can be one of five classes: Sitting, Standing, Walking, Running, or Dancing. Dichotomize the response by identifying whether the subject is moving (actid
> 2).
Y = Y > 2;
Create an incremental linear model for binary classification. The data is standardized during the estimation period and the Per Observation Loss block does not output the performance metrics for the next 500 observations.
linearMdl = incrementalClassificationLinear(ClassNames=[false,true], ...
NumPredictors=60, Standardize=true, EstimationPeriod=500, MetricsWarmupPeriod=500)
linearMdl = incrementalClassificationLinear IsWarm: 0 Metrics: [1×2 table] ClassNames: [0 1] ScoreTransform: 'none' Beta: [60×1 double] Bias: 0 Learner: 'svm' Properties, Methods
Create a copy of linearMdl
to be used as the initial model in the Per Observation Loss block.
initMdl = linearMdl;
Select the first 10,000 observations as the training set, and the next 10,000 observations to track the model performance metrics.
n = 10000; Xtrain = X(1:n,:); Ytrain = Y(1:n,:); Xmetrics = X(n+1:2*n,:); Ymetrics = Y(n+1:2*n,:);
Simulate streaming data by dividing the training data into chunks of 50 observations.
numObsPerChunk = 50; nchunk = floor(n/numObsPerChunk); for j = 1:nchunk ibegin = min(n,numObsPerChunk*(j-1) + 1); iend = min(n,numObsPerChunk*j); idx = ibegin:iend; Xin(:,:,j) = X(idx,:); Yin(:,j) = Y(idx); Xm_in(:,:,j) = Xmetrics(idx,:); Ym_in(:,j) = Ymetrics(idx); end
Next, convert the training and metric chunks into time series objects to load into the Simulink model.
t = 0:size(Xin,3)-1; X_ts = timeseries(Xin,t,InterpretSingleRowDataAs3D=true); Y_ts = timeseries(Yin',t,InterpretSingleRowDataAs3D=true); Xm_ts = timeseries(Xm_in,t,InterpretSingleRowDataAs3D=true); Ym_ts = timeseries(Ym_in',t,InterpretSingleRowDataAs3D=true);
This example provides a Simulink model, slexPerObsLoss.slx
, shown in the figure below. The model is configured to use linearMdl
as the initial model for the IncrementalClassificationLinear Fit block and initMdl
with the logit
loss function for the Per Observation Loss block. Double-click the block to access the Block Parameters dialog box.
slName = "slexPerObsLoss";
open_system(slName);
Simulate the Simulink model to perform incremental learning and compute the per observation loss metrics. Export the simulation outputs to the workspace. You can use the Simulation Data Inspector (Simulink) (Simulink) to view the logged data of an Outport block.
simOut = sim(slName,"StopTime",num2str(numel(t)-1));
% Extract IsWarm values IsWarm_sig = simOut.yout.getElement(1); IsWarm_sl = squeeze(IsWarm_sig.Values.Data); % Extract Metrics values loss_sig = simOut.yout.getElement(2); loss_sl = squeeze(loss_sig.Values.Data);
At each iteration, the IncrementalClassificationLinear Fit block trains the linear model and updates the model parameters. The Per Observation Loss block calculates the logistic error per observation.
Plot the IsWarm status indicator value and logistic error logit
for the observations in the last chunk on separate tiles.
figure tiledlayout(2,1); nexttile plot(IsWarm_sl,".") ylabel("IsWarm") xlabel("Iteration") xlim([0 nchunk]) nexttile plot(loss_sl(end,:),".") ylabel("Loss (logit)") xlabel("Observations") xlim([0 numObsPerChunk]) ylim([0 0.5])
Ports
Input
Incremental learning model fit to streaming data, specified as a bus signal (see
Composite Signals
(Simulink)).
Data Types: single
| double
| half
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| Boolean
| fixed point
Chunk of predictor data, specified as a numeric matrix. The orientation of the
variables and observations is specified by Predictor data observation
dimension. The default orientation is rows
, which
indicates that observations in the predictor data are oriented along the rows of
x.
The length of the observation responses y and the number of
observations in x must be equal;
y(
is the
response of observation j (row or column) in
x.j
)
The block supports only numeric input predictor data. If your input data includes
categorical data, you must prepare an encoded version of the categorical data. Use
dummyvar
to convert each categorical
variable to a numeric matrix of dummy variables. Then, concatenate all dummy variable
matrices and any other numeric predictors. For more details, see Dummy Variables.
Data Types: single
| double
| half
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| Boolean
| fixed point
Chunk of responses (labels) for measuring the model performance, specified as a numeric, logical, or enumerated vector.
The length of the observation responses y and the number of
observations in x must be equal;
y(j)
is the response of
observation j (row or column) in x.
For classification problems:
Each label must correspond to one row of the array.
If y contains a label that is not in
mdl.ClassNames
, the block issues an error.
Data Types: single
| double
| half
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| Boolean
| fixed point
| enumerated
Output
Flag indicating whether the incremental model tracks performance metrics, returned
as logical 0
(false
) or 1
(true
).
Value | Description |
---|---|
1 (true) | The incremental model mdl is warm. Consequently, the
block tracks performance metrics in the bus signal output. |
0 (false) | The block does not track performance metrics. |
Per observation regression or classification error of the model predictions using
the predictors in x and true observed values in
y, returned as a numeric matrix. The matrix is of size
nchunk-by-nobs where nchunk
is the total number of chunks and nobs is the number of
observations in a chunk of x. The loss is -1
if IsWarm is false
.
Specify the loss function to compute the error using Loss function.
Parameters
To edit block parameters interactively, use the Property Inspector. From the Simulink® Toolstrip, on the Simulation tab, in the Prepare gallery, select Property Inspector.
Specify the name of a workspace variable that contains the configured model object. You can use the following objects:
If a drift-aware model object is provided, the block will use the incremental learning model inside it.
The following constraints apply:
The predictor data cannot include categorical predictors (
logical
,categorical
,char
,string
, orcell
). If you supply training data in a table, the predictors must be numeric (double
orsingle
). To include categorical predictors in a model, preprocess them by usingdummyvar
before fitting the model.The
NumPredictors
property of the initial model must be a positive integer scalar, and must be equal to the number of predictors in x.The
ScoreTransform
property of the initial model (classification only) cannot be"invlogit"
or an anonymous function.
Programmatic Use
Block Parameter:
InitialLearner |
Type: character vector or string |
Values: workspace model object name |
Default:
"initMdl" |
Specify the loss function to compute the per observation loss during incremental
learning. For more details on loss functions, see loss
.
The following table lists the built-in loss function names:
For Regression Models:
Name Description "squarederror"
Squared error "epsiloninsensitive"
Epsilon-insensitive error Default is
"squarederror"
for regression models.For Classification Models:
Name Description "binodeviance"
Binomial deviance "classiferror"
Misclassification error rate "exponential"
Exponential "hinge"
Hinge "logit"
Logistic "quadratic"
Quadratic Note
You can only specify
"classiferror"
forincrementalClassificationECOC
models.
The Per Observation Loss block ignores the metrics specified by the
Metric
property of mdl.
Programmatic Use
Block Parameter:
LossFun |
Type: character vector or string |
Values:
"classiferror" | "binodeviance" | "exponential" | "hinge" | "logit" |
"quadratic" | "squarederror" | "epsiloninsensitive" |
Default:
"classiferror" for classification models and
"squarederror" for regression models |
Specify the observation dimension of the predictor data. The default value is
rows
, which indicates that observations in the predictor data are
oriented along the rows of x.
Programmatic Use
Block Parameter:
ObservationsIn |
Type: character vector |
Values:
"rows" | "columns" |
Default:
"rows" |
Specify the discrete interval between sample time hits or specify another type of sample
time, such as continuous (0
) or inherited (–1
). For more
options, see Types of Sample Time (Simulink).
By default, the Per Observation Loss block inherits sample time based on the context of the block within the model.
Programmatic Use
Block Parameter:
SystemSampleTime |
Type: string scalar or character vector |
Values: scalar |
Default:
"–1" |
Data Types
Fixed-Point Operational Parameters
Specify the rounding mode for fixed-point operations. For more information, see Rounding Modes (Fixed-Point Designer).
Block parameters always round to the nearest representable value. To control the rounding of a block parameter, enter an expression into the mask field using a MATLAB® rounding function.
Programmatic Use
Block Parameter:
RndMeth |
Type: character vector |
Values:
"Ceiling" | "Convergent" | "Floor" | "Nearest" | "Round" | "Simplest" |
"Zero" |
Default:
"Floor" |
Specify whether overflows saturate or wrap.
Action | Rationale | Impact on Overflows | Example |
---|---|---|---|
Select this check box
( | Your model has possible overflow, and you want explicit saturation protection in the generated code. | Overflows saturate to either the minimum or maximum value that the data type can represent. | The maximum value that the |
Clear this check box
( | You want to optimize the efficiency of your generated code. You want to avoid overspecifying how a block handles out-of-range signals. For more information, see Troubleshoot Signal Range Errors (Simulink). | Overflows wrap to the appropriate value that the data type can represent. | The maximum value that the |
Programmatic Use
Block Parameter:
SaturateOnIntegerOverflow |
Type: character vector |
Values:
"off" | "on" |
Default:
"off" |
Select this parameter to prevent the fixed-point tools from overriding the data type you specify for the block. For more information, see Use Lock Output Data Type Setting (Fixed-Point Designer).
Programmatic Use
Block Parameter:
LockScale |
Type: character vector |
Values:
"off" | "on" |
Default:
"off" |
Data Type
Specify the data type for the loss output. The type can be specified directly or
expressed as a data type object such as Simulink.NumericType
.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type
assistant button to display the Data Type
Assistant, which helps you set the data type attributes. For more
information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter:
LossDataTypeStr |
Type: character vector or string |
Values: | "double" |
"single" | "half" |
"int8" | "uint8" |
"int16" | "uint16" |
"int32" | "uint32" |
"int64" | "uint64" |
"boolean" | "fixdt(1,16,0)" |
"fixdt(1,16,2^0,0)" | "<data type
expression>" |
Default: "double"
|
Specify the lower value of the loss output range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Loss data type Minimum parameter does not saturate or clip the actual loss output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
LossOutMin |
Type: string or numeric scalar |
Values: "[]" |
scalar |
Default: "[]" |
Specify the upper value of the loss output range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Loss data type Maximum parameter does not saturate or clip the actual loss output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
LossOutMax |
Type: string or numeric scalar |
Values: "[]" |
scalar |
Default: "[]" |
Specify the data type for the response output from the predict block (IncrementalRegressionLinear Predict, IncrementalClassificationLinear Predict, IncrementalClassificationECOC Predict etc.) that is internal to the Per Observation Loss block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
When you select Inherit: auto
, the block uses a rule that inherits a data type.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant button to display the Data Type Assistant, which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter:
PredictResponseDataTypeStr |
Type: character vector or string |
Values: "Inherit: auto" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "<data type expression>" |
Default: "Inherit: auto" |
Specify the lower value of the internal predict response output range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Predict response data type Minimum parameter does not saturate or clip the actual predict response output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter: PredictResponseOutMin |
Type: string or numeric scalar |
Values: "[]" | scalar |
Default: "[]" |
Specify the upper value of the internal predict response output range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Predict response data type Maximum parameter does not saturate or clip the actual predict response output. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter: PredictResponseOutMax |
Type: string or numeric scalar |
Values: "[]" | scalar |
Default: "[]" |
Additional Data Types
Specify the data type for the additional response output from the predict block (IncrementalRegressionLinear Predict, IncrementalClassificationLinear Predict, or IncrementalClassificationECOC Predict) that is internal to the Per Observation Loss block. The type can be inherited, specified directly, or expressed as a data type object such as Simulink.NumericType
.
When you select Inherit: Inherit via internal rule
, the block uses an internal rule to determine the additional predict data type. The internal rule chooses a data type that optimizes numerical accuracy, performance, and generated code size, while taking into account the properties of the embedded target hardware. The software cannot always optimize efficiency and numerical accuracy at the same time.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type assistant
button to display the Data Type Assistant,
which helps you set the data type attributes. For more information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter: AdditionalPredictDataTypeStr |
Type: character vector |
Values: "Inherit: Inherit via internal rule" | "double" | "single" | "half" | "int8" | "uint8" | "int16" | "uint16" | "int32" | "uint32" | "int64" | "uint64" | "boolean" | "fixdt(1,16,0)" | "fixdt(1,16,2^0,0)" | "<data type expression>" |
Default: "Inherit: Inherit via internal rule" |
Specify the lower value of the additional predict output range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Additional predict data type Minimum parameter does not saturate or clip the actual additional predict. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter: AdditionalPredictOutMin |
Type: character vector |
Values: "[]" | scalar |
Default: "[]" |
Specify the upper value of the additional predict output range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Additional predict data type Maximum parameter does not saturate or clip the actual additional predict. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter: AdditionalPredictOutMax |
Type: string or numeric scalar |
Values: "[]" | scalar |
Default: "[]" |
Specify the data type for the internal linear sum. The type can be inherited,
specified directly, or expressed as a data type object such as
Simulink.NumericType
.
For more information about data types, see Control Data Types of Signals (Simulink).
Click the Show data type
assistant button to display the Data Type
Assistant, which helps you set the data type attributes. For more
information, see Specify Data Types Using Data Type Assistant (Simulink).
Programmatic Use
Block Parameter:
LinearSumDataTypeStr |
Type: character vector or string |
Values: Inherit: Inherit via
internal rule | "double" |
"single" | "half" |
"int8" | "uint8" |
"int16" | "uint16" |
"int32" | "uint32" |
"int64" | "uint64" |
"boolean" | "fixdt(1,16,0)" |
"fixdt(1,16,2^0,0)" | "<data type
expression>" |
Default: Inherit: Inherit via
internal rule
|
Specify the lower value of the linear sum range that Simulink checks.
Simulink uses the minimum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Linear sum data type Minimum parameter does not saturate or clip the actual linear sum. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
LinearSumOutMin |
Type: string or numeric scalar |
Values: "[]" |
scalar |
Default: "[]" |
Specify the upper value of the linear sum range that Simulink checks.
Simulink uses the maximum value to perform:
Parameter range checking for some blocks (see Specify Minimum and Maximum Values for Block Parameters (Simulink)).
Simulation range checking (see Specify Signal Ranges (Simulink) and Enable Simulation Range Checking (Simulink)).
Optimization of the code that you generate from the model. This optimization can remove algorithmic code and affect the results of some simulation modes, such as software-in-the-loop (SIL) mode or external mode. For more information, see Optimize using the specified minimum and maximum values (Embedded Coder).
The Linear sum data type Maximum parameter does not saturate or clip the actual linear sum. To do so, use the Saturation (Simulink) block instead.
Programmatic Use
Block Parameter:
LinearSumOutMax |
Type: string or numeric scalar |
Values: "[]" |
scalar |
Default: "[]" |
Block Characteristics
Data Types |
|
Direct Feedthrough |
|
Multidimensional Signals |
|
Variable-Size Signals |
|
Zero-Crossing Detection |
|
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.
Version History
Introduced in R2025a
See Also
Blocks
Objects
Functions
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)