finding neighbor of a position

23 views (last 30 days)
Hi, I have a matrix.
I =
1 0 0
2 5 0
0 0 3
0 0 0
I know the position of 5 in I is 6 linear index.
is there any easy function to have the 8 other neighbors of 5. Thanks

Accepted Answer

Oleg Komarov
Oleg Komarov on 26 Jun 2011
EDITED: should be fine now
I =[ 1 0 0
2 5 0
0 0 3
0 0 0];
l = 8;
sz = size(I);
% row, col subs of center
[r,c] = ind2sub(sz,l); % c = ceil(l/4); r = mod(l,4)+ c*sz(1);
% Calculate 8 neighbors
neigh(1:8,1:2) = [r+[-1;0;1;-1;1;-1;0;1] c+[-1;-1;-1;0;0;1;1;1] ];
% Only those in the range
neigh = neigh(all(neigh,2) & neigh(:,1) <= sz(1) & neigh(:,2) <= sz(2),:);
% Convert to position
idx = (neigh(:,2)-1)*sz(1) + neigh(:,1);
  3 Comments
Oleg Komarov
Oleg Komarov on 27 Jun 2011
Hopefuly now is ok. Tested initial and final position.

Sign in to comment.

More Answers (3)

Sean de Wolski
Sean de Wolski on 27 Jun 2011
idx = find(conv2(double(I==5),ones(3),'same'))
%This includes the 6, but that could easily be taken care of with setdiff.

Wolfgang Schwanghart
Wolfgang Schwanghart on 26 Jun 2011
  3 Comments
Wolfgang Schwanghart
Wolfgang Schwanghart on 27 Jun 2011
I = [ 1 0 0;
2 5 0;
0 0 3;
0 0 0];
% find the neighbors of the elements where I = 5
I5 = I==5;
[ix,ixn] = ixneighbors(I,I5)
ix =
6
6
6
6
6
6
6
6
ixn =
10
7
2
5
9
1
11
3
% thus, ixn are the linear indices of the neighbors of the indices ix.
% You'll find the values associated with the neighbors by
I(ixn)
ans =
0
0
2
0
0
1
3
0
Mohammad Golam Kibria
Mohammad Golam Kibria on 28 Jun 2011
thanks,this also works fine for me

Sign in to comment.


Andrei Bobrov
Andrei Bobrov on 26 Jun 2011
idl = 6;
idxs = ...
nonzeros(bsxfun(@plus,idl - [1 0 -1]',size(I,1)*[-1 0 1]).*[1 1 1;1 0 1;1 1 1])
CORRECTED 06/27/2011 10:05 MSK
idl = 6;
s = size(I);
I0 = zeros(s+2);
I0(2:end-1,2:end-1) = reshape(1:numel(I),s);
idxs = nonzeros(I0(bsxfun(@plus,find(I0==idl) - [1 0 -1]',(s(1)+2)*[-1 0 1])).*[1 1 1;1 0 1;1 1 1])
MORE variant (06/27/2011 11:12 MSK)
s = size(I);
[ii jj] = ind2sub(s,idl);
v = [-1 -1 -1;0 0 0;1 1 1];
R=ii+v;
C=jj+v';
loc = (R<=s(1) & R>=1&C<=s(2) & C>=1&[1 1 1;1 0 1;1 1 1])>0;
idxl = sub2ind(s,R(loc),C(loc));
MORE variant 2 (06/27/2011 11:35 MSK) with idea of Oleg
s = size(I);
[ii jj] = ind2sub(s,idl);
R = ii + [-1 0 1 -1 1 -1 0 1];
C = jj + [-1 -1 -1 0 0 1 1 1];
loc = (R<=s(1) & R>=1&C<=s(2) & C >= 1 )>0;
idxl = sub2ind(size(I),R(loc),C(loc));
LAST variant (06/27/2011 13:43 MSK)
I1 = zeros(size(I));
I1(idl)=1;
idx = find(bwdist(I1,'chessboard')==1)
or
idx = find(bwdist(I==5,'chessboard')==1)
  3 Comments
Andrei Bobrov
Andrei Bobrov on 27 Jun 2011
Thanks Oleg! Corrected...
Mohammad Golam Kibria
Mohammad Golam Kibria on 28 Jun 2011
Thanks this also works fine for me

Sign in to comment.

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!