You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
Matlab optimprob _Problem based _how can i see the optimal parameter setting while using optimprob
2 views (last 30 days)
Show older comments
Hi,
i am using optimprob for grid optimal dispatch problem, in this case how can i see the optimal parameter settings/iterations etc as we normally plot for other optimization methods, ?
Any graph/data that i can plot during simulation like optimization search space/paramters etc using any commands ???
[values,~,exitflag] = solve(prob,'Options',options);
I use this command,
how can i see the optimal values and cosntraints
Please advcie
Accepted Answer
Alan Weiss
on 14 Sep 2021
You can set a plot function in the options for your solver. To see which solver is being used, call optimoptions:
options = optimoptions(prob) % I assume prob is your optimproblem
Suppose that your solver is ga. Then you can set a plot function that ga accepts:
options = optimoptions(prob,"PlotFcn","gaplotbestf");
If the plot functions do not show what you want, feel free to write a custom plot function (ga is shown, but there are custom plot functions available for most solvers).
Alan Weiss
MATLAB mathematical toolbox documentation
11 Comments
NN
on 18 Sep 2021
This is my code ,
how can i view the optimal value, the variables that give the optimal value and the operating conditions?
% Solve the linear program
options = optimoptions(prob.optimoptions,'Display','none');
[values,~,exitflag] = solve(prob,'Options',options);
% Parse optmization results
if exitflag <= 0
Pd = zeros(N,1);
Pbattups = zeros(N,1);
Ebattups = zeros(N,1);
else
Pd = values.PdV;
Pbattups = values.PbattupsV;
Ebattups = values.EbattupsV;
end
NN
on 18 Sep 2021
with below command It doesnt not display anything either in workspace or in command window , i dont knwo what mistake i have done.
options = optimoptions(prob.optimoptions,'Display','iter');
NN
on 18 Sep 2021
Edited: NN
on 18 Sep 2021
when i used the below command
options = optimoptions(prob.optimoptions,'Display','iter');
[values,~,exitflag] = solve(prob,'Options',options);
fval = evaluate(prob.Objective,values);
I am getting below data in diagnosis viewer.
LP preprocessing removed 723 inequalities, 244 equalities,
727 variables, and 1379 non-zero elements.
Iter Time Fval Primal Infeas Dual Infeas
0 0.003 -5.713331e+09 5.951959e+08 0.000000e+00
101 0.004 -5.567856e+09 2.816612e+09 0.000000e+00
202 0.006 -5.397463e+09 1.412637e+10 0.000000e+00
303 0.007 -5.188584e+09 2.415490e+08 0.000000e+00
345 0.008 -5.186765e+09 0.000000e+00 0.000000e+00
Optimal solution found.
fval =
-6.0203e+09
What does thsi mean?what are the different parameters mentioned ?Please advice
In this below exampl,
tb1=struct2table(chemsol)
gives the variable values for fval,
I rewritten it as
tb1=struct2table(values) and got 241*5 table in diagnostic viewer.
LP preprocessing removed 723 inequalities, 244 equalities,
727 variables, and 1379 non-zero elements.
Iter Time Fval Primal Infeas Dual Infeas
0 0.004 -5.713331e+09 5.951959e+08 0.000000e+00
101 0.005 -5.567856e+09 2.816612e+09 0.000000e+00
202 0.008 -5.397463e+09 1.412637e+10 0.000000e+00
303 0.011 -5.188584e+09 2.415490e+08 0.000000e+00
345 0.012 -5.186765e+09 0.000000e+00 0.000000e+00
Optimal solution found.
tb1 =
241×5 table
Ebatt1V EbattupsV PbattEVregV PbattupsV PdV
________ _________ ___________ ___________ ___________
7.2e+07 5.575e+09 -16500 -4.1667e+05 4.5438e+05
7.2e+07 5.7e+09 -16500 -5e+05 5.378e+05
7.2e+07 5.85e+09 -16500 -5e+05 5.3788e+05
7.2e+07 6e+09 -16500 5e+05 -4.6813e+05
7.2e+07 5.85e+09 -16500 5e+05 -4.683e+05
7.2e+07 5.7e+09 -16500 5e+05 -4.6846e+05
7.2e+07 5.55e+09 -16500 5e+05 -4.6862e+05
7.2e+07 5.4e+09 -16500 5e+05 -4.6879e+05
7.2e+07 5.25e+09 -16500 5e+05 -4.6895e+05
7.2e+07 5.1e+09 -16500 5e+05 -4.6911e+05
7.2e+07 4.95e+09 -16500 5e+05 -4.6927e+05
7.2e+07 4.8e+09 -16500 5e+05 -4.6944e+05
7.2e+07 4.65e+09 -16500 5e+05 -4.696e+05
7.2e+07 4.5e+09 -16500 5e+05 -4.6976e+05
7.2e+07 4.35e+09 -16500 5e+05 -4.6993e+05
7.2e+07 4.2e+09 -16500 5e+05 -4.7007e+05
7.2e+07 4.05e+09 -16500 5e+05 -4.7015e+05
7.2e+07 3.9e+09 -16500 5e+05 -4.7023e+05
7.2e+07 3.75e+09 -16500 5e+05 -4.7031e+05
7.2e+07 3.6e+09 -16500 5e+05 -4.7039e+05
7.2e+07 3.45e+09 -16500 5e+05 -4.7048e+05
7.2e+07 3.3e+09 -16500 5e+05 -4.7056e+05
7.2e+07 3.15e+09 -16500 5e+05 -4.7064e+05
7.2e+07 3e+09 -16500 5e+05 -4.7072e+05
7.2e+07 2.85e+09 -16500 5e+05 -4.708e+05
7.2e+07 2.7e+09 -16500 5e+05 -4.7088e+05
7.2e+07 2.55e+09 -16500 5e+05 -4.7096e+05
7.2e+07 2.4e+09 -16500 5e+05 -4.7102e+05
7.2e+07 2.25e+09 -16500 5e+05 -4.7099e+05
7.2e+07 2.1e+09 -16500 5e+05 -4.7097e+05
7.2e+07 1.95e+09 -16500 5e+05 -4.7094e+05
7.2e+07 1.8e+09 -16500 0 29084
7.2e+07 1.8e+09 -16500 0 29109
7.2e+07 1.8e+09 -16500 0 29134
7.2e+07 1.8e+09 -16500 0 29160
7.2e+07 1.8e+09 -16500 0 29185
7.2e+07 1.8e+09 -16500 0 29210
7.2e+07 1.8e+09 -16500 0 29235
7.2e+07 1.8e+09 -16500 0 29261
7.2e+07 1.8e+09 -16500 0 29302
7.2e+07 1.8e+09 -16500 0 29404
7.2e+07 1.8e+09 -16500 0 29506
7.2e+07 1.8e+09 -16500 0 29608
7.2e+07 1.8e+09 -16500 0 29710
7.2e+07 1.8e+09 -16500 0 29812
7.2e+07 1.8e+09 -16500 0 29914
7.2e+07 1.8e+09 -16500 0 30016
7.2e+07 1.8e+09 -16500 0 30119
7.2e+07 1.8e+09 -16500 0 30221
7.2e+07 1.8e+09 -16500 0 30323
7.2e+07 1.8e+09 -16500 0 30425
7.2e+07 1.8e+09 -16500 0 30643
7.2e+07 1.8e+09 -16500 0 31327
7.2e+07 1.8e+09 -16500 0 32011
7.2e+07 1.8e+09 -16500 0 32695
7.2e+07 1.8e+09 -16500 0 33379
7.2e+07 1.8e+09 -16500 0 34063
7.2e+07 1.8e+09 -16500 0 34747
7.2e+07 1.8e+09 -16500 0 35431
7.2e+07 1.8e+09 -16500 0 36114
7.2e+07 1.8e+09 -16500 0 36798
7.2e+07 1.8e+09 -16500 0 37482
7.2e+07 1.8e+09 -16500 0 38166
7.2e+07 1.8e+09 -16500 0 38960
7.2e+07 1.8e+09 -16500 -5e+05 5.4019e+05
7.2e+07 1.95e+09 -16500 -5e+05 5.4142e+05
7.2e+07 2.1e+09 -16500 -5e+05 5.4265e+05
7.2e+07 2.25e+09 -16500 -5e+05 5.4388e+05
7.2e+07 2.4e+09 -16500 -5e+05 5.4512e+05
7.2e+07 2.55e+09 -16500 -5e+05 5.4635e+05
7.2e+07 2.7e+09 -16500 -5e+05 5.4758e+05
7.2e+07 2.85e+09 -16500 -5e+05 5.8181e+05
7.2e+07 3e+09 -16500 -5e+05 5.8304e+05
7.2e+07 3.15e+09 -16500 -5e+05 5.8427e+05
7.2e+07 3.3e+09 -16500 -5e+05 5.855e+05
7.2e+07 3.45e+09 -16500 -5e+05 5.8677e+05
7.2e+07 3.6e+09 -16500 -5e+05 5.8815e+05
7.2e+07 3.75e+09 -16500 -5e+05 5.8953e+05
7.2e+07 3.9e+09 -16500 -5e+05 5.9091e+05
7.2e+07 4.05e+09 -16500 -5e+05 5.9229e+05
7.2e+07 4.2e+09 -16500 -5e+05 5.9367e+05
7.2e+07 4.35e+09 -16500 -5e+05 5.9505e+05
7.2e+07 4.5e+09 -16500 -5e+05 5.9643e+05
7.2e+07 4.65e+09 -16500 -5e+05 5.9781e+05
7.2e+07 4.8e+09 -16500 -5e+05 5.9919e+05
7.2e+07 4.95e+09 -16500 -5e+05 5.8408e+05
7.2e+07 5.1e+09 -16500 -5e+05 5.8546e+05
7.2e+07 5.25e+09 -16500 -5e+05 4.5447e+05
7.2e+07 5.4e+09 -16500 -5e+05 4.5612e+05
7.2e+07 5.55e+09 -16500 -5e+05 4.5777e+05
7.2e+07 5.7e+09 -16500 -5e+05 4.5942e+05
7.2e+07 5.85e+09 -16500 -5e+05 4.6107e+05
7.2e+07 6e+09 -16500 -5e+05 4.6272e+05
7.2e+07 6.15e+09 -16500 -5e+05 4.6437e+05
7.2e+07 6.3e+09 -16500 -5e+05 4.6602e+05
7.2e+07 6.45e+09 -16500 -5e+05 4.6767e+05
7.2e+07 6.6e+09 -16500 -5e+05 4.6932e+05
7.2e+07 6.75e+09 -16500 -5e+05 6.6897e+05
7.2e+07 6.9e+09 -16500 -5e+05 6.7062e+05
7.2e+07 7.05e+09 -16500 -5e+05 3.756e+05
7.2e+07 7.2e+09 -16500 -1.334e-08 -1.234e+05
7.2e+07 7.2e+09 -16500 0 -1.224e+05
7.2e+07 7.2e+09 -16500 0 -1.214e+05
7.2e+07 7.2e+09 -16500 0 -1.204e+05
7.2e+07 7.2e+09 -16500 0 -1.194e+05
7.2e+07 7.2e+09 -16500 0 2.1161e+05
7.2e+07 7.2e+09 -16500 0 2.1261e+05
7.2e+07 7.2e+09 -16500 0 2.1361e+05
7.2e+07 7.2e+09 -16500 0 2.1461e+05
7.2e+07 7.2e+09 -16500 0 2.1561e+05
7.2e+07 7.2e+09 -16500 0 2.1661e+05
7.2e+07 7.2e+09 -16500 0 -25221
7.2e+07 7.2e+09 -16500 0 -25239
7.2e+07 7.2e+09 -16500 0 -25258
7.2e+07 7.2e+09 -16500 0 -25276
7.2e+07 7.2e+09 -16500 0 -25294
7.2e+07 7.2e+09 -16500 0 40687
7.2e+07 7.2e+09 -16500 0 40669
7.2e+07 7.2e+09 -16500 0 40651
7.2e+07 7.2e+09 -16500 0 40632
7.2e+07 7.2e+09 -16500 0 40614
7.2e+07 7.2e+09 -16500 0 40596
7.2e+07 7.2e+09 -16500 0 40578
7.2e+07 7.2e+09 -16500 0 -98620
7.2e+07 7.2e+09 -16500 0 -99406
7.2e+07 7.2e+09 -16500 0 -1.0019e+05
7.2e+07 7.2e+09 -16500 0 -1.0098e+05
7.2e+07 7.2e+09 -16500 0 -1.0176e+05
7.2e+07 7.2e+09 -16500 0 -1.0255e+05
7.2e+07 7.2e+09 -16500 8.0039e-09 -1.0334e+05
7.2e+07 7.2e+09 -16500 5e+05 -6.0412e+05
7.2e+07 7.05e+09 -16500 5e+05 -6.0491e+05
7.2e+07 6.9e+09 -16500 5e+05 -6.0569e+05
7.2e+07 6.75e+09 -16500 5e+05 -6.0648e+05
7.2e+07 6.6e+09 -16500 5e+05 -6.0726e+05
7.2e+07 6.45e+09 -16500 5e+05 -6.8054e+05
7.2e+07 6.3e+09 -16500 5e+05 -6.7989e+05
7.2e+07 6.15e+09 -16500 5e+05 -6.7924e+05
7.2e+07 6e+09 -16500 5e+05 -6.7858e+05
7.2e+07 5.85e+09 -16500 5e+05 -6.7793e+05
7.2e+07 5.7e+09 -16500 5e+05 -6.7728e+05
7.2e+07 5.55e+09 -16500 5e+05 -6.7663e+05
7.2e+07 5.4e+09 -16500 5e+05 -6.7598e+05
7.2e+07 5.25e+09 -16500 5e+05 -6.7532e+05
7.2e+07 5.1e+09 -16500 5e+05 -6.7467e+05
7.2e+07 4.95e+09 -16500 5e+05 -6.7402e+05
7.2e+07 4.8e+09 -16500 5e+05 -6.7337e+05
7.2e+07 4.65e+09 -16500 5e+05 -6.6775e+05
7.2e+07 4.5e+09 -16500 5e+05 -6.6772e+05
7.2e+07 4.35e+09 -16500 5e+05 -6.677e+05
7.2e+07 4.2e+09 16500 5e+05 -1.9877e+06
7.2e+07 4.05e+09 16500 5e+05 -1.9876e+06
7.2e+07 3.9e+09 16500 5e+05 -1.9876e+06
7.2e+07 3.75e+09 16500 5e+05 -1.9876e+06
7.2e+07 3.6e+09 16500 5e+05 -1.9876e+06
7.2e+07 3.45e+09 16500 5e+05 -1.9875e+06
7.2e+07 3.3e+09 16500 5e+05 -1.9875e+06
7.2e+07 3.15e+09 16500 5e+05 -1.9875e+06
7.2e+07 3e+09 16500 5e+05 -1.9875e+06
7.2e+07 2.85e+09 16500 5e+05 -1.9605e+06
7.2e+07 2.7e+09 16500 5e+05 -1.961e+06
7.2e+07 2.55e+09 16500 5e+05 -1.9614e+06
7.2e+07 2.4e+09 16500 5e+05 -1.9619e+06
7.2e+07 2.25e+09 16500 5e+05 -1.9623e+06
7.2e+07 2.1e+09 16500 5e+05 -1.9628e+06
7.2e+07 1.95e+09 16500 5e+05 -1.9633e+06
7.2e+07 1.8e+09 16500 0 -1.4637e+06
7.2e+07 1.8e+09 16500 0 -1.4807e+06
7.2e+07 1.8e+09 16500 0 -1.4811e+06
7.2e+07 1.8e+09 16500 0 -1.4816e+06
7.2e+07 1.8e+09 16500 0 -1.4821e+06
7.2e+07 1.8e+09 16500 0 -1.3138e+06
7.2e+07 1.8e+09 16500 0 -1.3143e+06
7.2e+07 1.8e+09 16500 0 -1.2489e+06
7.2e+07 1.8e+09 16500 0 -1.2494e+06
7.2e+07 1.8e+09 16500 0 -1.25e+06
7.2e+07 1.8e+09 16500 0 -1.2505e+06
7.2e+07 1.8e+09 16500 0 -1.251e+06
7.2e+07 1.8e+09 16500 0 -1.2516e+06
7.2e+07 1.8e+09 16500 0 -1.2521e+06
7.2e+07 1.8e+09 16500 0 -1.2526e+06
7.2e+07 1.8e+09 16500 0 -1.2532e+06
7.2e+07 1.8e+09 16500 0 -1.2537e+06
7.2e+07 1.8e+09 16500 0 -8.4094e+05
7.2e+07 1.8e+09 16500 0 -8.4202e+05
7.2e+07 1.8e+09 16500 0 -8.431e+05
7.2e+07 1.8e+09 16500 0 -8.4418e+05
7.2e+07 1.8e+09 16500 0 -8.4526e+05
7.2e+07 1.8e+09 16500 0 -8.4634e+05
7.2e+07 1.8e+09 16500 0 -8.4742e+05
7.2e+07 1.8e+09 16500 0 -8.485e+05
7.2e+07 1.8e+09 16500 0 -8.4959e+05
7.2e+07 1.8e+09 16500 -1.0545e-09 -8.5067e+05
7.2e+07 1.8e+09 16500 1.0949e-09 -8.5175e+05
7.2e+07 1.8e+09 -16500 1.2775e-09 -77328
7.2e+07 1.8e+09 -16500 -1.3262e-09 1.7958e+05
7.2e+07 1.8e+09 -16500 0 1.7854e+05
7.2e+07 1.8e+09 -16500 0 1.7749e+05
7.2e+07 1.8e+09 -16500 0 1.7644e+05
7.2e+07 1.8e+09 -16500 0 1.7539e+05
7.2e+07 1.8e+09 -16500 -2.1344e-08 1.7435e+05
7.2e+07 1.8e+09 -16500 -5e+05 6.733e+05
7.2e+07 1.95e+09 -16500 -5e+05 6.7225e+05
7.2e+07 2.1e+09 -16500 -5e+05 6.7121e+05
7.2e+07 2.25e+09 -16500 -5e+05 6.7016e+05
7.2e+07 2.4e+09 -16500 -5e+05 6.6911e+05
7.2e+07 2.55e+09 -16500 -5e+05 6.6807e+05
7.2e+07 2.7e+09 -16500 -5e+05 8.1026e+05
7.2e+07 2.85e+09 -16500 -5e+05 8.0963e+05
7.2e+07 3e+09 -16500 -5e+05 8.0901e+05
7.2e+07 3.15e+09 -16500 -5e+05 8.0839e+05
7.2e+07 3.3e+09 -16500 -5e+05 8.0776e+05
7.2e+07 3.45e+09 -16500 -5e+05 8.0714e+05
7.2e+07 3.6e+09 -16500 -5e+05 8.0651e+05
7.2e+07 3.75e+09 -16500 -5e+05 8.0589e+05
7.2e+07 3.9e+09 -16500 -5e+05 8.0527e+05
7.2e+07 4.05e+09 -16500 -5e+05 8.0464e+05
7.2e+07 4.2e+09 -16500 -5e+05 8.0402e+05
7.2e+07 4.35e+09 -16500 -5e+05 8.034e+05
7.2e+07 4.5e+09 -16500 -5e+05 7.0381e+05
7.2e+07 4.65e+09 -16500 -5e+05 7.0336e+05
7.2e+07 4.8e+09 -16500 -5e+05 7.0292e+05
7.2e+07 4.95e+09 -16500 -5e+05 7.0247e+05
7.2e+07 5.1e+09 -16500 -5e+05 7.0202e+05
7.2e+07 5.25e+09 -16500 -5e+05 7.0158e+05
7.2e+07 5.4e+09 -16500 -5e+05 7.0113e+05
7.2e+07 5.55e+09 -16500 -5e+05 7.0068e+05
7.2e+07 5.7e+09 -16500 -5e+05 7.0024e+05
7.2e+07 5.85e+09 -16500 -5e+05 6.9979e+05
7.2e+07 6e+09 -16500 -5e+05 6.9935e+05
7.2e+07 6.15e+09 -16500 -5e+05 6.494e+05
7.2e+07 6.3e+09 -16500 -5e+05 6.4896e+05
7.2e+07 6.45e+09 -16500 -5e+05 6.4854e+05
7.2e+07 6.6e+09 -16500 -5e+05 6.4812e+05
7.2e+07 6.75e+09 -16500 -5e+05 6.477e+05
7.2e+07 6.9e+09 16500 -5e+05 4.4928e+05
7.2e+07 7.05e+09 16500 -5e+05 4.4886e+05
7.2e+07 7.2e+09 16500 0 -51554
7.2e+07 7.2e+09 16500 0 -51972
7.2e+07 7.2e+09 -16500 0 46609
2.88e+08 7.2e+09 -16500 -5e+05 5.4619e+05
NN
on 18 Sep 2021
Is it possible to get a signle value or a final value for optimised objective function and the variables instead of all these 241*5 table ?
kindly advice.
Alan Weiss
on 20 Sep 2021
It is clear that solve is using intlinprog as the underlying solver. You have a mixed-integer linear programming problem.
The solution sol and objective function value fval are returned in
[sol,fval] = solve(prob,'Options',opts)
If that does not answer your question, then I obviously didn't understand what you were asking. Maybe ask in a different way, with an example of what you want.
Alan Weiss
MATLAB mathematical toolbox documentation
NN
on 20 Sep 2021
Thank you very much. I understood it now, but i have a question, Please be kind to clear my doubt.I am getting Favl value very big,
I have tried to plot the values of optimal solution (minimal cost in this problem)
When I used the command
options = optimoptions(prob.optimoptions,'Display','iter');
I am getting a big value of 8.97e10 $/hr as Fval(optimal solution).
Please check this and confirm if it is correct or not or since the problem using an optimized time vector(dt=300), Is it required to modify the fval we get at the end (8.97e10 $/hr.)?
Please let me know. I am attaching the modified files(battsolaropt) and the diagnostic viewer screen for your reference. It is written No feasible solution was found.
Also please let me know why a gain of (3600*100) is used for calculating cost in Simulink, Why 100 is there?
Please advice .This has been posted as a seperate post here also,
https://www.mathworks.com/matlabcentral/answers/1456834-question-about-finding-the-optimal-value-_problem-based-optimization
NN
on 20 Sep 2021
as per the problem,only 241 x1 table will be the answer for each variable or single variable i can get ?
Alan Weiss
on 20 Sep 2021
I'm sorry, but I have reached the limit of the time I am willing to put in investigating your problem.
Alan Weiss
MATLAB mathematical toolbox documentation
More Answers (0)
See Also
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)