bezier surface plotter question
1 view (last 30 days)
Show older comments
i want to write program of bezier surface but it is wrong please help me this program that i wrote:
x=[12 23 13 4 5]';y=[12 4 15 23 7]';z=[1 14 25 2 7]'; p=[x,y,z];
bez = [];
n = size(p, 1) - 1;
O = 1; for v = 0:0.01:1; for u = 0:0.01:1;
suma = [0 0 0];
for i=0:n
for j=0:n
if i==0, res = 1;
elseif n==0, res = 0;
else
res = 1;
for a=1:i
res = res*((n - i + a)/a);
end
end
if j==0, res1 = 1;
elseif n==0, res1 = 0;
else
res1 = 1;
for a1=1:j
res1 = res1*((n - j + a1)/a1);
end
end
suma = suma + p(i+1, :)*res*(u^i)*((1 - u)^(n - i))*res1*(v^j)*((1 - v)^(n - j)) ;
end
bez(O, :) = suma;
O=O+1
end
end end
plot3(x,y,z,'k') hold on grid on
if ischar(fig) symbol = fig; elseif n < 30 symbol = 'o'; else symbol = '.';
end
for j = 1:n hPoints = plot3(p(:,1), p(:,2),p(:,3), symbol); hold on; end hold on, hbc = plot3(bez(:, 1), bez(:, 2), bez(:, 3), 'LineWidth', 3, 'Color', 'b'); % plots the Bezier curve legend([hbc], {'Bezier curve'}) title(sprintf('number of points: %d', n+1))
and the formula is
where is p is control points
and
0 Comments
Answers (1)
amina lk
on 2 Dec 2014
this control point of curve ,you have to use 16 control point for you to draw a bezier surface
look this exemple of bezier surf
clear; clf; % Blending Function % Parametric Values u= 0 : 0.05 : 1; for i=1:21 U(i,1)=u(i)^3; U(i,2)=u(i)^2; U(i,3)=u(i); U(i,4)=1; end w= 0 : 0.05 : 1; for i=1:21 W(i,1)=w(i)^3; W(i,2)=w(i)^2; W(i,3)=w(i); W(i,4)=1; end % Cubic Bezier transformation Matrix M=[ -1 3 -3 1; 3 -6 3 0; -3 3 0 0; 1 0 0 0;]; % Control Vertices of patch1 % P00 p10 p20 p30 p01 p11 p21 p31 p02 p12 p22 p32 p03 p13 p23 p33 patch1 = [-5, -2, 2, 5, -4, -2.5, 2.5, 4, -8.5, -4.5, 4.5, 8.5, -7, -3, 3, 7; 1, 3, 3, 1, 1, 2, 2, 1, -1, 0, 0, -1, 2, 4, 4, 2; -6, -6, -6, -6, -3, -3, -3, -3, 1, 3, 3, 1, 5, 6.5, 6.5, 5; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; % Control Vertices of patch1 CV_X=[ patch1(1,1) patch1(1,5) patch1(1,9) patch1(1,13); patch1(1,2) patch1(1,6) patch1(1,10) patch1(1,14); patch1(1,3) patch1(1,7) patch1(1,11) patch1(1,15); patch1(1,4) patch1(1,8) patch1(1,12) patch1(1,16);]; CV_Y=[ patch1(2,1) patch1(2,5) patch1(2,9) patch1(2,13); patch1(2,2) patch1(2,6) patch1(2,10) patch1(2,14); patch1(2,3) patch1(2,7) patch1(2,11) patch1(2,15); patch1(2,4) patch1(2,8) patch1(2,12) patch1(2,16);]; CV_Z=[ patch1(3,1) patch1(3,5) patch1(3,9) patch1(3,13); patch1(3,2) patch1(3,6) patch1(3,10) patch1(3,14); patch1(3,3) patch1(3,7) patch1(3,11) patch1(3,15); patch1(3,4) patch1(3,8) patch1(3,12) patch1(3,16);]; % Bezier Surfaces for i=1:21 for j=1:21 P_X(i,j)=U(i,:)*M*CV_X*M'*W(j,:)'; P_Y(i,j)=U(i,:)*M*CV_Y*M'*W(j,:)'; P_Z(i,j)=U(i,:)*M*CV_Z*M'*W(j,:)'; end end % figure lange MIN_X=-8; MAX_X=8; MIN_Y=-8; MAX_Y=8; MIN_Z=-8; MAX_Z=8; %Plot Bezier Surfaces figure(1); axis ([MIN_X, MAX_X, MIN_Y, MAX_Y, MIN_Z, MAX_Z]); title('4-1 : Bezier Surfaces (SCREW ANGLE)'); xlabel('X'); ylabel('Y'); Zlabel('Z'); hold on; for i=1:21 plot3 (P_X(:,i), P_Y(:,i), P_Z(:,i), 'k'); plot3 (P_X(i,:), P_Y(i,:), P_Z(i,:), 'k'); end for i=1:4 plot3 (CV_X(:,i), CV_Y(:,i), CV_Z(:,i), ':'); plot3 (CV_X(i,:), CV_Y(i,:), CV_Z(i,:), ':'); end hold off; figure(2); axis ([MIN_X, MAX_X, MIN_Z, MAX_Z]); title('4-1 : Bezier Surfaces (SIDE VIEW1)'); xlabel('X'); ylabel('Z'); hold on; for i=1:21 plot (P_X(:,i), P_Z(:,i), 'k'); plot (P_X(i,:), P_Z(i,:), 'k'); end for i=1:4 plot (CV_X(:,i), CV_Z(:,i), ':'); plot (CV_X(i,:), CV_Z(i,:), ':'); end hold off; figure(3); axis ([MIN_Y, MAX_Y, MIN_Z, MAX_Z]); title('4-1 : Bezier Surfaces (SIDE VIEW2)'); xlabel('Y'); ylabel('Z'); hold on; for i=1:21 plot (P_Y(:,i), P_Z(:,i), 'k'); plot (P_Y(i,:), P_Z(i,:), 'k'); end for i=1:4 plot (CV_Y(:,i), CV_Z(:,i), ':'); plot (CV_Y(i,:), CV_Z(i,:), ':'); end hold off figure(4); axis ([MIN_X, MAX_X, MIN_Y, MAX_Y]); title('4-1 : Bezier Surfaces (TOP VIEW)'); xlabel('X'); ylabel('Y'); hold on; for i=1:21 plot (P_X(:,i), P_Y(:,i), 'k'); plot (P_X(i,:), P_Y(i,:), 'k'); end for i=1:4 plot (CV_X(:,i), CV_Y(:,i), ':'); plot (CV_X(i,:), CV_Y(i,:), ':'); end hold off
See Also
Categories
Find more on Surface and Mesh Plots in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!