Why it is not making plot for different values of "M"?
1 view (last 30 days)
Show older comments
syms x
alpha = -0.1;
sigma = 0.1;
eps = -0.1;
e = 0.2;
a = 2;
lambda = 2;
psi = 10;
figure
M_list = [4, 6, 8, 10];
for i = 1:numel(M_list)
M = M_list(i);
hbar = @(x) a - a.*x + x;
A1 = eps + alpha^3 + (3 * sigma^2 * alpha);
B1 = @(x) (-3 * lambda * M) * ((hbar(x).^2) + (2 .* hbar(x) .* alpha) + (sigma^2) + (alpha^2));
a1 = @(x) tanh(M .* hbar(x));
b1 = @(x) 1 - ((tanh(M .* hbar(x))).^2);
c1 = (M * alpha) - ((M^3 * A1)/3);
d1 = 2 * (M^2) * (1 + lambda);
C1 = @(x) a1(x) + (b1(x) .* c1);
D1 = @(x) d1 .* ((hbar(x).^3) + (3 .* (hbar(x).^2) .* alpha) + (3 .* hbar(x) .* (alpha)^2) + (3 .* hbar(x) .* (sigma)^2) + eps + (3 * alpha * (sigma^2)) + (alpha^3));
f1 = @(x) B1(x) + (3 * lambda .* C1(x) .* hbar(x)) + (3 * lambda .* C1(x) .* alpha) + (D1(x) .* C1(x));
f2 = @(x) 12 * (M^2) * (1 + lambda) .* C1(x);
f3 = psi * (e^3);
f4 = (1 + lambda) *180 * ((1 - e)^2); % 180 is not given in paper
f5 = 1/(2 + lambda);
F = @(x) ((f5 .* f1(x))./f2(x)) + (f3/f4);
q1 = @(x) hbar(x) ./ (2 .* F(x));
Q1 = integral(q1,0,1);
q2 = @(x) 1./(F(x));
Q2 = integral(q2,0,1);
Q = Q1/Q2;
p1 = @(x) (1./F(x)) .* ((0.5 .* hbar(x)) - Q);
P = @(x) integral(p1,0,x);
fplot(P, [0 1])
ylim([0 1])
set(gca, 'ytick', 0:0.1:1);
set(gca, 'xtick', 0:0.2:1);
xlabel('x')
ylabel('P(x)')
end
0 Comments
Accepted Answer
KSSV
on 8 Jul 2022
Edited: KSSV
on 8 Jul 2022
You have to use hold on.
syms x
warning off
alpha = -0.1;
sigma = 0.1;
eps = -0.1;
e = 0.2;
a = 2;
lambda = 2;
psi = 10;
M_list = [4, 6, 8, 10];
figure
hold on
for i = 1:numel(M_list)
M = M_list(i);
hbar = @(x) a - a.*x + x;
A1 = eps + alpha^3 + (3 * sigma^2 * alpha);
B1 = @(x) (-3 * lambda * M) * ((hbar(x).^2) + (2 .* hbar(x) .* alpha) + (sigma^2) + (alpha^2));
a1 = @(x) tanh(M .* hbar(x));
b1 = @(x) 1 - ((tanh(M .* hbar(x))).^2);
c1 = (M * alpha) - ((M^3 * A1)/3);
d1 = 2 * (M^2) * (1 + lambda);
C1 = @(x) a1(x) + (b1(x) .* c1);
D1 = @(x) d1 .* ((hbar(x).^3) + (3 .* (hbar(x).^2) .* alpha) + (3 .* hbar(x) .* (alpha)^2) + (3 .* hbar(x) .* (sigma)^2) + eps + (3 * alpha * (sigma^2)) + (alpha^3));
f1 = @(x) B1(x) + (3 * lambda .* C1(x) .* hbar(x)) + (3 * lambda .* C1(x) .* alpha) + (D1(x) .* C1(x));
f2 = @(x) 12 * (M^2) * (1 + lambda) .* C1(x);
f3 = psi * (e^3);
f4 = (1 + lambda) *180 * ((1 - e)^2); % 180 is not given in paper
f5 = 1/(2 + lambda);
F = @(x) ((f5 .* f1(x))./f2(x)) + (f3/f4);
q1 = @(x) hbar(x) ./ (2 .* F(x));
Q1 = integral(q1,0,1);
q2 = @(x) 1./(F(x));
Q2 = integral(q2,0,1);
Q = Q1/Q2;
p1 = @(x) (1./F(x)) .* ((0.5 .* hbar(x)) - Q);
P = @(x) integral(p1,0,x);
fplot(P, [0 1])
end
legend(num2str(M_list'))
ylim([0 1])
set(gca, 'ytick', 0:0.1:1);
set(gca, 'xtick', 0:0.2:1);
xlabel('x')
ylabel('P(x)')
More Answers (0)
See Also
Categories
Find more on Lighting, Transparency, and Shading in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!