Saving figures and automatic legend

6 views (last 30 days)
I tried this
ax = gca;
exportgraphics(ax,'myplot.png','Resolution',300)
but is saving only the last plot. I also want automatic legend. Below is my code:
%% initialization
clear
clc
close all
%% Model parameters
global k1 eta1 alpha3 gamma1 d N Phi xi h A B C G
k1 = 6*10^(-12); % elastic constant
eta1 = 0.0240; % viscosity
xi = -1; % activity parameter
alpha3 = -0.001104; % viscosity
gamma1 = 0.1093; % viscosity
Theta = 0.0001;
% Simplify model parameters
A = k1/gamma1;
B = alpha3/gamma1;
C = eta1 - alpha3*B;
G = alpha3*A;
d = 0.0002;
N = 200;
%% Numerical setup
% step size
h = d/N;
% t span
tspan = [0 100];
% range of z
%z=linspace(0,d/2,N+1)
z=linspace(0,d,N+1);
% initial conditions
theta0 = Theta*sin(pi*z/d);
v0 = zeros(1,N+1);
theta0_int=theta0(2:N);
v0_int=v0(2:N);
u0 = [theta0_int'; v0_int'];
% Constant mass matrix M: We use M to represent the left hand side of the system of equations.
M1=eye(N-1,N-1);
M2=zeros(N-1,N-1);
M=[M1 M2;M2 M2];
% Boundary Conditions
Phi = 0;
%% ode solver
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',1e-6);
[t,y] = ode15s(@lcode1,tspan,u0, options);
theta_middle = y(:,N/2); % theta at the middle of the layer (i.e., z=d/2)
% Extract the solution for theta and v
theta = [Phi*ones(length(t), 1) y(:,1:N-1) Phi*ones(length(t), 1)];
v = [zeros(length(t), 1) y(:,N:(2*N-2)) zeros(length(t), 1)];
%% Plot the solution.
figure
subplot(2,2,1)
plot(z, theta(1:5,:))
xlabel('z(\mum)')
ylabel('\theta(z,t)(rad)')
title('Director angle','FontSize',10)
%[xmin(z) xmax(z) ymin(theta) ymax(theta)];
subplot(2,2,2)
plot(z, v(1:5,:))
xlabel('z(\mum)')
ylabel('v(z,t)(m/s)')
title('Flow velocity')
%[xmin(z) xmax(z) ymin(theta) ymax(theta)];
subplot(2,2,3)
plot(t,theta_middle)
xlabel('z(\mum)')
ylabel('\theta(d/2,t)(rad)')
title('Director angle at the middle of the layer', 'FontSize',6)
ax = gca;
% Requires R2020a or later
exportgraphics(ax,'modelplot.png','Resolution',300)
%% Functions
% Right hand side of the ODEs: F(U)
function rhsode = lcode1(t,y)
global Phi xi h A B C G N
% initialize theta and v
theta = y(1:(N-1));
v = y(N:(2*N-2));
rhsode(1,1) = (A/(h^2))*(theta(2)-2*theta(1)+ Phi) - (B/(2*h))*(v(2)-0);
% for all other internal positions 0<z<d
for i=2:(N-2)
rhsode(i,1) = (A/(h^2))*(theta(i+1)-2*theta(i)+theta(i-1)) - (B/(2*h))*(v(i+1)-v(i-1));
end
% for the positon to the left of the right hand boundary z=d
rhsode(N-1,1) = (A/(h^2))*(Phi-2*theta(N-1)+ theta(N-2)) - (B/(2*h))*(0-v(N-2));
rhsode(N,1) = (G/(h^3))*(-Phi + 3*theta(1) - 3*theta(2) + theta(3)) + (C/(h^2))*(v(2) -2*v(1)+ 0) + (xi/(2*h))*(theta(2)-Phi);
rhsode(N+1,1) = (G/(2*h^3))*(Phi - 2*theta(1) + 2*theta(3)- theta(4)) + (C/(h^2))*(v(3) -2*v(2) + v(1)) + (xi/(2*h))*(theta(3)-theta(1));
% for all other internal positions 0<z<d
for i=(N+2):(2*N-4)
rhsode(i,1) = (G/(2*h^3))*(theta(i-2-(N-1)) - 2*theta(i-1-(N-1)) + 2*theta(i+1-(N-1))- theta(i+2-(N-1))) +(C/(h^2))*(v(i+1-(N-1)) -2*v(i-(N-1)) + v(i-1-(N-1))) + (xi/(2*h))*(theta(i+1-(N-1))-theta(i-1-(N-1)));
end
% for the two positons to the left of the right hand boundary z=d
rhsode(2*N-3,1) = (G/(2*h^3))*(theta(N-4) - 2*theta(N-3) + 2*theta(N-1) - Phi) +(C/(h^2))*(v(N-1) -2*v(N-2) + v(N-3)) + (xi/(2*h))*(theta(N-1)-theta(N-3));
rhsode(2*N-2,1) = (G/(h^3))*(-theta(N-3) + 3*theta(N-2) - 3*theta(N-1) + Phi) +(C/(h^2))*(0 -2*v(N-1) + v(N-2)) + (xi/(2*h))*(Phi-theta(N-2));
end

Accepted Answer

dpb
dpb on 17 Aug 2022
You only saved a handle to the current axes via gca at the end -- but you created three (3) axes via subplot
Save the handles of the axes when you create them and then export each in turn, using the array of axes handles you just saved at the end.
  3 Comments
dpb
dpb on 17 Aug 2022
Edited: dpb on 17 Aug 2022
In that case it's the figure handle you want, not the axes...
hF=gcf;
exportgraphics(hF,'modelplot.png','Resolution',300)
See exportgraphics description for details on object handle input argument.

Sign in to comment.

More Answers (0)

Categories

Find more on Graphics Object Programming in Help Center and File Exchange

Products


Release

R2022a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!