
Fitting a monotonically increasing spline function
    23 views (last 30 days)
  
       Show older comments
    
I want to fit a monotonously increasing smooth spline function for a dataset
x = [0., 0.75, 1.8, 2.25, 3.75, 4.5, 6.45, 6.75, 7.5, 8.325, 10.875, 11.25, 12.525, 12.75, 15., 20.85, 21.]
y = [2.83811035, 2.81541896, 3.14311655, 3.22373554, 3.43033456, 3.50433385, 3.66794514, 3.462296, 3.59480959,
    3.56250726, 3.6209845,  3.63034523, 3.68238915, 3.69096892, 3.75560395, 3.83545191, 3.90419498]

The current fit using interp1d looks like the above. I would like to know how to fit a monotonously increasing spline function.

0 Comments
Accepted Answer
  Bruno Luong
      
      
 on 5 Sep 2022
        One way is to use my https://uk.mathworks.com/matlabcentral/fileexchange/25872-free-knot-spline-approximation
x = [0., 0.75, 1.8, 2.25, 3.75, 4.5, 6.45, 6.75, 7.5, 8.325, 10.875, 11.25, 12.525, 12.75, 15., 20.85, 21.]
y = [2.83811035, 2.81541896, 3.14311655, 3.22373554, 3.43033456, 3.50433385, 3.66794514, 3.462296, 3.59480959,3.56250726, 3.6209845,  3.63034523, 3.68238915, 3.69096892, 3.75560395, 3.83545191, 3.90419498]
nknots=10;
opt=struct('shape',struct('p',1,'lo',zeros(1,nknots),'up',inf(1,nknots)));
pp=BSFK(x,y,4,nknots,[],opt); %FEX
xi=linspace(min(x),max(x),100);
yi=ppval(pp,xi);
plot(xi,yi,'-',x,y,'or')

7 Comments
  Bruno Luong
      
      
 on 6 Sep 2022
				
      Edited: Bruno Luong
      
      
 on 6 Sep 2022
  
			Monotonic polynomial
x = [0., 0.75, 1.8, 2.25, 3.75, 4.5, 6.45, 6.75, 7.5, 8.325, 10.875, 11.25, 12.525, 12.75, 15., 20.85, 21.];
y = [2.83811035, 2.81541896, 3.14311655, 3.22373554, 3.43033456, 3.50433385, 3.66794514, 3.462296, 3.59480959,3.56250726, 3.6209845,  3.63034523, 3.68238915, 3.69096892, 3.75560395, 3.83545191, 3.90419498];
% Stuff needed to normalize the data for better inversion
[xmin, xmax] = bounds(x);
xnfun = @(x)(x(:)-xmin)/(xmax-xmin);
xn=xnfun(x);
% cofficients of 2D polynomial 3d order
k = 0:7;
C = [xn.^k]; % please no comment about my use of bracket here
d = y;
% Constraint positive of 3 x 3 points in the recatagular domain to be positive,
% it should be enough
XNC = linspace(0,1,41);
A = -[k.*XNC(:).^(k-1)]; % please no comment ...
A(:,k==0)=0;
b = 0+zeros(size(A,1),1); % A*P<=0 means polynomial at (xnc,ync)>=0
P = lsqlin(C,d,A,b);
% Graphical check
% Create a grided model surface
xi=linspace(xmin,xmax,201);
Xin=xnfun(xi);
Yi=[Xin.^k]*P;  % please no comment about my use of bracket here
close all
plot(xi,Yi);
hold on
plot(x,y,'or')
xlabel('x')
ylabel('y')
More Answers (0)
See Also
Categories
				Find more on Polynomials in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

