Matrix size and scalar problem using fmincon
    7 views (last 30 days)
  
       Show older comments
    
    Paul AGAMENNONE
 on 23 Nov 2022
  
    
    
    
    
    Commented: Paul AGAMENNONE
 on 29 Nov 2022
            Hello, 
I'm trying to run an optimization reliability problem using fmincon but I got a size problem when I integrate my function to search for the global reliability and thus fmincon cannot return a scalar value.
I don't know exactly where my problem stands so I ask for help.
Here is my code
muL = 2000;
sigL = 200;
R1 = 1-9.92*10^-5;
R2 = 1-1.2696*10^-4;
R3 = 1-3.87*10^-6;
Sr1_min = sqrt(((((1.5-1)*muL)/norminv(R1))^2)-(sigL)^2);
Sr1_max = sqrt(((((2.5-1)*muL)/norminv(R1))^2)-(sigL)^2);
Sr2_min = sqrt(((((1.5-1)*muL)/norminv(R2))^2)-(sigL)^2);
Sr2_max = sqrt(((((2.5-1)*muL)/norminv(R2))^2)-(sigL)^2);
Sr3_min = sqrt(((((1.5-1)*muL)/norminv(R3))^2)-(sigL)^2);
Sr3_max = sqrt(((((2.5-1)*muL)/norminv(R3))^2)-(sigL)^2);
lb = [Sr1_min,Sr2_min,Sr3_min];
ub = [Sr1_max,Sr2_max,Sr3_max];
A = [];
B = [];
Aeq = [];
Beq = [];
d0 = (lb+ub)/5;
fun = @(d) parameterfun(d,muL,sigL,R1,R2,R3);
const = @(d) nonlcon(d,muL,sigL,R1,R2,R3);
options = optimoptions('fmincon','Display','iter','Algorithm','sqp');
[d,fval] = fmincon(fun,d0,A,B,Aeq,Beq,lb,ub,const,options);
function Rs = parameterfun(d,muL,sigL,R1,R2,R3)
%
mu_Sr1 = muL+norminv(R1)*sqrt((sigL)^2+(d(1))^2);
mu_Sr2 = muL+norminv(R2)*sqrt((sigL)^2+(d(2))^2);
mu_Sr3 = muL+norminv(R3)*sqrt((sigL)^2+(d(3))^2);
%
Y1_mean = muL-mu_Sr1;
Y2_mean = muL-mu_Sr2;
Y3_mean = muL-mu_Sr3;
%
Y1_std = sqrt((d(1))^2+(sigL)^2);
Y2_std = sqrt((d(2))^2+(sigL)^2);
Y3_std = sqrt((d(3))^2+(sigL)^2);
%
Y_mean = [Y1_mean Y2_mean Y3_mean];
Y_std = [(Y1_std^2) (sigL)^2 (sigL)^2; (sigL)^2 (Y2_std)^2 (sigL)^2; (sigL)^2 (sigL)^2 (Y3_std)^2];
inv_Y_std = inv(Y_std);
det_Y_std = det(Y_std);
fy = @(y) (1/(2*pi)^(3/2).*(det_Y_std)^0.5).*exp(-(1/2).*transpose(y-Y_mean).*inv_Y_std.*(y-Y_mean));
%
Rs = 1-integral(fy,-inf,0,'ArrayValued',true);
%pf = 1-Rs;
%
end
function [c,ceq] = nonlcon(d,muL,sigL,R1,R2,R3)
muL = 2000;
sigL = 200;
c(1) = 1.5 - ((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2)))/muL);
c(2) = 1.5 - ((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2)))/muL);
c(3) = 1.5 - ((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2)))/muL);
c(4) = ((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2)))/muL) - 2.5;
c(5) = ((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2)))/muL) - 2.5;
c(6) = ((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2)))/muL) - 2.5;
c(7) = 0.08 - (d(1)/((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2)))));
c(8) = 0.08 - (d(2)/((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2)))));
c(9) = 0.08 - (d(3)/((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2)))));
c(10) = (d(1)/((muL+norminv(R1)*sqrt((d(1)^2)+(sigL^2))))) - 0.2;
c(11) = (d(2)/((muL+norminv(R2)*sqrt((d(2)^2)+(sigL^2))))) - 0.2;
c(12) = (d(3)/((muL+norminv(R3)*sqrt((d(3)^2)+(sigL^2))))) - 0.2;
ceq = [];
end
Thank you in advance.
Paul
0 Comments
Accepted Answer
  William Rose
      
 on 23 Nov 2022
        It appears that the value Rs returned by parameterfun() is a vector (or array).  Rs is a vector because function fy(), inside the integral on the right hand side of Rs, is a vector (or array).  Add another calculation inside parameterfun(), after Rs is computed, to convert the vector Rs to a scalar, which is a global measure of reliability.  parameterfun() should return this scalar, instead of the vector Rs.
fmincon() minimizes a function.  If you want to maximize global reliability, insert a minus sign, or a reciprocal, somewhere.
18 Comments
  Torsten
      
      
 on 29 Nov 2022
				I wanted to compare the results from fmincon when using integral3 and mvncdf in one run.
So I called fmincon first with flag = 1 to compute with integral3 and called fmincon thereafter with flag = 2 to compute with mvncdf.
More Answers (0)
See Also
Categories
				Find more on Function Creation in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



