default value check [fitnet]

4 views (last 30 days)
인국 강
인국 강 on 19 Dec 2022
Answered: Rohit on 22 Feb 2023
using fitnet, i made a prediction model. so i have to explain how to make it and how to train, so i would like to know the defaults values of the function 'fitnet', for example, i would like to know the initial weight vector or what sigmoid function it uses. how can i know them?? thank you in advance.

Answers (1)

Rohit
Rohit on 22 Feb 2023
When we use fitnet, it returns a neural network object. We can inspect this object for the weight values before and after training, and all other things related to the model.
net=fitnet(10) % in output we can see weight and bias parameters
net = Neural Network name: 'Function Fitting Neural Network' userdata: (your custom info) dimensions: numInputs: 1 numLayers: 2 numOutputs: 1 numInputDelays: 0 numLayerDelays: 0 numFeedbackDelays: 0 numWeightElements: 10 sampleTime: 1 connections: biasConnect: [1; 1] inputConnect: [1; 0] layerConnect: [0 0; 1 0] outputConnect: [0 1] subobjects: input: Equivalent to inputs{1} output: Equivalent to outputs{2} inputs: {1x1 cell array of 1 input} layers: {2x1 cell array of 2 layers} outputs: {1x2 cell array of 1 output} biases: {2x1 cell array of 2 biases} inputWeights: {2x1 cell array of 1 weight} layerWeights: {2x2 cell array of 1 weight} functions: adaptFcn: 'adaptwb' adaptParam: (none) derivFcn: 'defaultderiv' divideFcn: 'dividerand' divideParam: .trainRatio, .valRatio, .testRatio divideMode: 'sample' initFcn: 'initlay' performFcn: 'mse' performParam: .regularization, .normalization plotFcns: {'plotperform', 'plottrainstate', 'ploterrhist', 'plotregression', 'plotfit'} plotParams: {1x5 cell array of 5 params} trainFcn: 'trainlm' trainParam: .showWindow, .showCommandLine, .show, .epochs, .time, .goal, .min_grad, .max_fail, .mu, .mu_dec, .mu_inc, .mu_max weight and bias values: IW: {2x1 cell} containing 1 input weight matrix LW: {2x2 cell} containing 1 layer weight matrix b: {2x1 cell} containing 2 bias vectors methods: adapt: Learn while in continuous use configure: Configure inputs & outputs gensim: Generate Simulink model init: Initialize weights & biases perform: Calculate performance sim: Evaluate network outputs given inputs train: Train network with examples view: View diagram unconfigure: Unconfigure inputs & outputs
net.b{1} %getting initial bias value
ans = 10×1
0 0 0 0 0 0 0 0 0 0

Categories

Find more on Deep Learning Toolbox in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!