Clear Filters
Clear Filters

Fourier Series Integration in terms of Pi

5 views (last 30 days)
Bob Gill
Bob Gill on 17 Apr 2023
Edited: VBBV on 15 Jul 2024
Hello,
The following code is just to check my integration of a fourier series transform, but the output doesn't seem to be right for bn. It displays a large number at the end of the bn output.
syms t
syms n 'integer'
an = (1/pi)*(int(-1*cos(n*pi*t/pi),-pi,-pi/2)+int(0*cos(n*pi*t/pi), -pi/2, pi/2)+int(1*cos(n*pi*t/pi), pi/2, pi))
bn = (1/pi)*(int(-1*sin(n*pi*t/pi),-pi,-pi/2)+int(0*sin(n*pi*t/pi), -pi/2, pi/2)+int(1*sin(n*pi*t/pi), pi/2, pi))
pretty(an)
pretty(bn)

Answers (1)

VBBV
VBBV on 17 Apr 2023
Edited: VBBV on 15 Jul 2024
Hi @Bob Gill, the value of bn can be computed as follows
syms t n 'integer'
an = (1/pi)*(int(-1*cos(n*pi*t/pi),-pi,-pi/2)+int(0*cos(n*pi*t/pi), -pi/2, pi/2)+int(-1*cos(n*pi*t/pi), pi/2, pi))
an = 
bn = (1/pi)*(int(-1*sin(n*pi*t/pi),-pi,-pi/2)+int(0*sin(n*pi*t/pi), -pi/2, pi/2)+int(-1*sin(n*pi*t/pi), pi/2, pi))
bn = 
0
vpa(an,2)
ans = 
vpa(bn,2)
ans = 
0.0
  1 Comment
VBBV
VBBV on 17 Apr 2023
Edited: VBBV on 17 Apr 2023
Use vpa to ccompute the bn value. You can also consider the vpaintegral function to compute the values for an and bn

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!