3D poisson for electrostatics using solvepde

18 views (last 30 days)
Md Niloy Khan
Md Niloy Khan on 16 May 2023
Commented: Duncan Carlsmith on 30 Dec 2024 at 18:39
These are coordinates of atoms: [1.8150 3.6300 6.2895; 3.6300 1.8150 7.5000; 3.6300 1.8150 5.0789; -2.7225 4.7186 6.2895; 0.9075 6.5336 7.5000; 0.9075 6.5336 5.0789; 2.7225 4.7186 6.2895; 6.3525 6.5336 7.5000; 6.3525 6.5336 5.0789; 0 9.4373 6.2895; 3.6300 11.2523 7.5000; 3.6300 11.2523 5.0789; 5.4450 9.4373 6.2895; 9.0750 11.2523 7.5000; 9.0750 11.2523 5.0789; 2.7225 14.1559 6.2895];
There are 16 atoms. I get a row matrix of charge density(rho) from negf solver of size 1×16. x axis is the transport direction with bias voltage 0.5V. in z axis I apply electric field of 5V. In y axis electrostatic doesn’t change. I want dirichlet boundary condition in x axis. Neumann boundary in z axis. Periodic in y axis. All atoms with lowest & highest x values correspond to boundary in x direction. And atoms with lowest & highest z values correspond to boundary in z direction. Poisson equation to be solve is in form Del^2U(x,y,z)=-rho(x,y,z)/epsilon. Any guide on how to do it using solvepde?

Answers (1)

Karan Singh
Karan Singh on 4 Sep 2023
Hi Md Niloy Khan,
To solve the Poisson equation using the solvepde function in MATLAB, you need to define the geometry, specify the boundary conditions, and set up the PDE coefficients.
  1. Define the geometry: Create a 2D geometry using the geometryFromEdges function. Define the boundaries corresponding to the x-axis and z-axis boundaries as separate edge sets.
  2. Create a mesh: Generate a mesh using the generateMesh function. Specify the geometry and desired mesh size.
  3. Define the PDE coefficients: Create a PDE model using the createpde function. Set the coefficients of the Poisson equation, including the diffusion coefficient (c), the source term (f), and the electric permittivity (epsilon).
  4. Define the boundary conditions: Use the applyBoundaryCondition function to specify the boundary conditions. For the x-axis boundaries, use the Dirichlet boundary condition ('dirichlet') with a constant value. For the z-axis boundaries, use the Neumann boundary condition ('neumann') with a zero gradient. For the periodic boundary condition in the y-axis, use the periodic condition ('periodic').
  5. Solve the PDE: Call the solvepde function, passing the PDE model, mesh, and boundary conditions as arguments. This will solve the Poisson equation and return the solution.
Here is an example code snippet:
% Define the coordinates of the atoms
coords = [1.8150 3.6300 6.2895; 3.6300 1.8150 7.5000; 3.6300 1.8150 5.0789; -2.7225 4.7186 6.2895; 0.9075 6.5336 7.5000; 0.9075 6.5336 5.0789; 2.7225 4.7186 6.2895; 6.3525 6.5336 7.5000; 6.3525 6.5336 5.0789; 0 9.4373 6.2895; 3.6300 11.2523 7.5000; 3.6300 11.2523 5.0789; 5.4450 9.4373 6.2895; 9.0750 11.2523 7.5000; 9.0750 11.2523 5.0789; 2.7225 14.1559 6.2895];
% Create the geometry
g = geometryFromEdges(edges);
% Create the mesh
mesh = generateMesh(g, 'Hmax', 0.1);
% Create the PDE model
model = createpde();
% Set the PDE coefficients
c = 1; % Diffusion coefficient
f = -rho; % Source term
epsilon = 1; % Electric permittivity
specifyCoefficients(model, 'm', 0, 'd', 0, 'c', c, 'a', 0, 'f', f, 'epsilon', epsilon);
% Define the boundary conditions
applyBoundaryCondition(model, 'dirichlet', 'Edge', xBoundaryEdges, 'u', 0.5);
applyBoundaryCondition(model, 'neumann', 'Edge', zBoundaryEdges);
applyBoundaryCondition(model, 'periodic', 'Edge', yBoundaryEdges);
% Solve the PDE
results = solvepde(model, mesh);
% Extract the solution
U = results.NodalSolution;
This code provides a starting point for solving the Poisson equation using the solvepde function in MATLAB. You may need to adapt and modify it based on your specific requirements and problem setup.
Attached below are some documentation links that you may find helpful:
Hope this helps!
  1 Comment
Duncan Carlsmith
Duncan Carlsmith on 30 Dec 2024 at 18:39
How does one define rho? Please provide a working example.

Sign in to comment.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!