I am trying to perform the second derivative test of this function I came up with
2 views (last 30 days)
Show older comments
Oliver Ries
on 29 Feb 2024
Commented: Oliver Ries
on 29 Feb 2024
Trying to do the second derivative test to find the minimum W, but none of this code is working. How do I get the critical points and then the second derivative to test if those points are a minimum. Also how do I go back and plug them into the equation for R and W when I set them up as syms.
E = 9.9*10^6;
p = .098;
F = 1500;
L = 20;
g = 32.2*12;
I = (F*L^2)/(E*pi^2);
syms R1 t
x = I == (pi/4)*(((R1+t)^4)-(R1^4));
R = solve(x, R1, 'MaxDegree', 4);
W0 = 2.*pi.*p.*L.*g.*t.*R;
disp(W0);
W = inline(W0,'t');
disp(W);
dW = diff(W(t),t)==0;
disp(dW);
cp = vpasolve(dW,t);
0 Comments
Accepted Answer
Walter Roberson
on 29 Feb 2024
Edited: Walter Roberson
on 29 Feb 2024
Q = @(v) sym(v);
Pi = Q(pi);
E = Q(9.9)*10^6;
p = Q(.098);
F = Q(1500);
L = Q(20);
g = Q(32.2)*12;
I = (F*L^2)/(E*Pi^2);
syms R1 t
x = I == (Pi/4)*(((R1+t)^4)-(R1^4));
R = solve(x, R1, 'MaxDegree', 4);
W0 = 2.*Pi.*p.*L.*g.*t.*R;
disp(W0);
dW = diff(W0,t)==0;
disp(dW);
cp = arrayfun(@(F) solve(F,t), dW(1), 'uniform', 0)
cp{1}
vpa(cp{1})
Hmmm... those look suspiciously similar...
Note that the general solution involves
cp = arrayfun(@(F) solve(F,t), dW, 'uniform', 0)
I had to restrict it to dW(1) to fit within the time limits here.
More Answers (0)
See Also
Categories
Find more on Calculus in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!