if number of steps is not multiple of 3 how to do simpsons 3/8 rule? why im getting more error in simpsons 3/8 rule than in simpsons 1/3 rule?
4 views (last 30 days)
Show older comments
Here, as dx is 0.1 and 0.01, n is not multiple of 3 for 3/8 rule.tried by making n same for all 3 rules. but error in 3/8 > error in 1/3. how to solve this issue?
% Define the function
f = @(x) 2-x+log(x);
% Define integration limits
a = 1;
b = 2;
% Exact integral value
og = integral(f,a,b);
%Step sizes
h1 =(b-a)/12;
h2 =(b-a)/102;
% Trapezoidal Rule
trph1 = h1/2 * (f(a) + f(b) + 2*sum(f(a+h1:h1:b-h1)));
trph2 = h2/2 * (f(a) + f(b) + 2*sum(f(a+h2:h2:b-h2)));
trperh1 = abs((trph1-og) / og) * 100;
trperh2 = abs((trph2-og) / og) * 100;
% Simpson's 1/3 Rule
simp1h1 = h1/3 * (f(a) + f(b) + 2*sum(f(a+2*h1:2*h1:b-2*h1)) + 4*sum(f(a+h1:2*h1:b-h1)));
simp1h2 = h2/3 * (f(a) + f(b) + 2*sum(f(a+2*h2:2*h2:b-2*h2)) + 4*sum(f(a+h2:2*h2:b-h2)));
simp1erh1 = abs((simp1h1 - og) / og) * 100;
simp1erh2 = abs((simp1h2 - og) / og) * 100;
% Simpson's 3/8 Rule
simp2h1 = (3*h1/8) * (f(a) +f(b) + 3*sum(f(a+h1:3*h1:b-2*h1)) + 3*sum(f(a+2*h1:3*h1:b-h1)) + 2*sum(f(a+3*h1:3*h1:b-3*h1)));
simp2h2 = (3*h2/8) * (f(a) +f(b) + 3*sum(f(a+h2:3*h2:b-2*h2)) + 3*sum(f(a+2*h2:3*h2:b-h2)) + 2*sum(f(a+3*h2:3*h2:b-3*h2)));
simp2erh1 = abs((simp2h1 - og) / og) * 100;
simp2erh2 = abs((simp2h2 - og) / og) * 100;
% Display results
disp('for h = 0.1 :-');
disp(['Trapezoidal Rule: ',num2str(trph1), ', Error: ', num2str(trperh1)]);
disp(['Simpson''s 1/3 Rule: ', num2str(simp1h1), ', Error: ', num2str(simp1erh1)]);
disp(['Simpson''s 3/8 Rule: ', num2str(simp2h1), ', Error: ', num2str(simp2erh1)]);
% disp('for h = 0.01 :-');
disp(['Trapezoidal Rule: ', num2str(trph2), ', Error: ', num2str(trperh2)]);
disp(['Simpson''s 1/3 Rule: ', num2str(simp1h2), ', Error: ', num2str(simp1erh2)]);
disp(['Simpson''s 3/8 Rule: ', num2str(simp2h2), ', Error: ', num2str(simp2erh2)]);
0 Comments
Accepted Answer
Torsten
on 4 Apr 2024
Moved: Torsten
on 4 Apr 2024
if number of steps is not multiple of 3 how to do simpsons 3/8 rule?
The 1/3 rule can be used for the remaining subintervals without changing the order of the error term (conversely, the 3/8 rule can be used with a composite 1/3 rule for odd-numbered subintervals).
why im getting more error in simpsons 3/8 rule than in simpsons 1/3 rule?
Why do you think this should not be the case ? Both composite rules are of the same order as far as I know.
More Answers (0)
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!