Single vehicle tracking using Fourier transform-MATLAB
4 views (last 30 days)
Show older comments
I am working on a project which is based on importance of phase only reconstruction of a signal obtained from fft.
Now ,I have detected vehicles from the Video of Traffic on road taken using stationary camera ( Please download the 1.47 MB video for testing MATLAB Code by ( step1) click on the play button then (step2) right clicking on video then ( step3 ) click on save as option )
If you run the code in MATLAB, you can observe that I am quite successful in detecting all the vehicles in each video frames. But now I want to do tracking of only one vehicle with changes in my code
So can anybody help me how to detect single vehicle by doing changes in my MATLAB Code ?
tic
clc;
clear all;
close all;
%read video file
video = VideoReader('D:\dvd\Matlab code\test videos\5.mp4');
T= video.NumberOfFrames ; %number of frames%
frameHeight = video.Height; %frame height
frameWidth = video.Width ; %frameWidth
get(video); %return graphics properties of video
i=1;
for t=300:15:550 %select frames between 300 to 550 with interval of 15 from the video
frame_x(:,:,:,i)= read(video, t);
frame_y=frame_x(:,:,:,i);
%figure,
%imshow(f1),title(['test frames :' num2str(i)]);
frame_z=rgb2gray(frame_y); %convert each colour frame into gray
frame_m(:,:,:,i)=frame_y; %Store colour frames in the frame_m array
%Perform Gaussian Filtering
h1=(1/8)*(1/8)*[1 3 3 1]'*[1 3 3 1] ; % 4*4 Gaussian Kernel
convn=conv2(frame_z,h1,'same');
g1=uint8(convn);
Filtered_Image_Array(:,:,i)=g1; %Store filtered images into an array
i=i+1;
end
%Apply 3-D Fourier Transform on video sequences
f_transform=fftn(Filtered_Image_Array);
%Compute phase spectrum array from f_transform
phase_spectrum_array =exp(1j*angle(f_transform));
%Apply 3-D Inverse Fourier Transform on phase spectrum array and
%reconstruct the frames
reconstructed_frame_array=(ifftn(phase_spectrum_array));
k=i;
i=1;
for t=1:k-1
%Smooth the reconstructed frame of Î(x, y, n) using the averaging filter.
Reconstructed_frame_magnitude=abs(reconstructed_frame_array(:,:,t));
H = fspecial('disk',4);
circular_avg(:,:,t) = imfilter(Reconstructed_frame_magnitude,H);
%Convert the current frame into binary image using mean value as the threshold
mean_value=mean2(circular_avg(:,:,t));
binary_frame = im2bw(circular_avg(:,:,t),1.6*mean_value);
%Perform Morphological operations
se = strel('square',3);
morphological_closing = imclose(binary_frame,se);
morphological_closing=imclearborder(morphological_closing); %clear noise present at the borders of the frames
%Superimpose segmented masks on it's respective frames to obtain moving
%objects
moving_object_frame = frame_m(:,:,:,i);
moving_object_frame(morphological_closing) = 255;
figure,
imshow(moving_object_frame,[]), title(['Moving objects in Frame :' num2str(i)]);
i=i+1;
end
toc
0 Comments
Answers (0)
See Also
Categories
Find more on Feature Detection and Extraction in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!