Clear Filters
Clear Filters

Convert higher order to first order system

3 views (last 30 days)
kingsley
kingsley on 17 May 2017
Answered: Torsten on 17 May 2017
I'm trying to solve the higher order ode by using RK4 method. Here is the code I have so far.
function [y] = rk4_high_ode(a,t0,n,h,f)
%f = @(t,y) 2*y(2)-y(3)+2*y(4);
% Do I need to define y(2) derivative first?
F=@(t,y)[y(2:end);f]; % Convert the higher order to the 1st order system
t(1)=t0;
for i=1:n
% update time
t(i+1)=t(i)+h;
k1=F(t(i) ,y(i) );
k2=F(t(i)+0.5*h,y(i)+0.5*h*k1);
k3=F(t(i)+0.5*h,y(i)+0.5*h*k2);
k2=F(t(i)+h ,y(i)+h*k1 );
y(i+1)=y(i)+h/6*(k1+2*k2+2*k3+k4);
end
end
And this is the test program:
clear
% test y=sin(t)
% y^(4) = 2*y'-y"+2*y^(3)
t0 = 0.1; n = 100; h = 1e-2;
a = [sin(t0) cos(t0) -sin(t0) -cos(t0)]';
f = @(t,y) 2*y(2)-y(3)+2*y(4);
y = rk4_high_ode(a,t0,n,h,f);
ye = sin(t0+n*h);
error2 = abs(y-ye)
There is an error " Undefined function or variable 'y'". Does that mean I need to define y(2) first? or something else.

Answers (1)

Torsten
Torsten on 17 May 2017
You will have to define
f=@(t,y) [y(2) y(3) y(4) 2*y(2)-y(3)+2*y(4)];
Additionally note that "rk4_high_ode" must be modified because at the moment, it is only capable of solving a single ODE.
Best wishes
Torsten.

Categories

Find more on Mathematics in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!