Solving a linear system equations with variables on both sides
9 views (last 30 days)
Show older comments
I am trying to solve a linear system of equation in which variables occur on both sides.
Lu = [Lu1; Lu2; Lu3]
A = [1 2 3; 4 5 6; 7 8 9];
B = [U1; U2; U3];
In this system, I know Lu1, U2, and U3 and none of them is zero. Is there a way to solve this system of equations?
0 Comments
Answers (3)
Walter Roberson
on 17 Nov 2017
If the system is Lu'*A == B, then that is 9 equations in 3 unknowns. If you proceed to solve one variable at a time, then after you have solved for all three variables you reach the system
[ U2 == U2, U2 == U2, U2 == U2]
[ U2 == U2, U2 == U2, U2 == U2]
[ U2 == U3, U2 == U3, U2 == U3]
so the system can only be solved in the case that U2 == U3
2 Comments
joe kangas
on 22 Nov 2020
this is a system with three unknowns and three equations, not 9. This problem comes up a lot in finite element solutions and as far as I'm aware there's not a straight forward general soltution. I believe they are itterative
Walter Roberson
on 23 Nov 2020
If the system is Lu'*A == B' then
Lu = sym('Lu', [3 1], 'real');
A = [1 2 3; 4 5 6; 7 8 10]; %note original 7 8 9 is not full rank
B = sym('U', [3,1], 'real');
Lu'*A == B'
So that is three equations in six unknowns.
%Lu' == B' * inv(A)
%Lu' == B'/A
%Lu = (B'/A)'
left_LU_solution = (B'/A)'
On the other hand if the equations were
A*Lu == B
Then that would be a system of 9 equations in 6 unknowns:
right_Lu_solultion = A\B
See Also
Categories
Find more on Stability Analysis in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!