Does anyone know why it is so? I did find one thread that did say it could be due to Windows environment? Is it because of it? And multiple GPU will not be faster than one?
Why multiple GPUs slower than one GPU?
2 views (last 30 days)
Show older comments
Dear All,
On my machine there are 2 GPUs. Why moving data to multiple GPUs in my case is about 5x slower, than working with just one GPU, environment WIN10, MATLAB R2017b. Here is code and example:
clear;
dd1=rand(100000,200,10 );
cc1=rand(100000,200,10 );
tic
dd=gpuArray(dd1);
cc=gpuArray(cc1);
wait (gpuDevice);
toc
nGPUs = gpuDeviceCount();
parpool('local', nGPUs );
d1=rand(100000,200,10 );
d2(1)={d1(1:50000,:,:)};
d2(2)={d1(50001:100000,:,:)};
c1(1:nGPUs) = {zeros(50000,200,10)};
tic
parfor i = 1:nGPUs
gpuDevice(i);
c=gpuArray(c1{i});
d=gpuArray(d2{i});
end
toc
6 Comments
Joss Knight
on 6 Oct 2018
You're not just moving data to two GPUs, you're moving it from the client to the pool, and then onto the GPUs. Communicating between processes takes time. Also, you don't call wait(gp) before you call tic which means the copy-to-device hasn't finished when you start timing.
In a real multi-GPU example you would be doing significant computation and constructing data on the pool, rather than on the client. This example is all overhead and so isn't very representative. You would see a similar issue if you opened a pool of only one worker.
Also, you don't need to select the gpuDevice since selecting a different GPU on each worker is done automatically for communicating jobs.
Answers (0)
See Also
Categories
Find more on GPU Computing in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!