first order equilibrium point

1 view (last 30 days)
Jhon
Jhon on 25 Oct 2018
Hello,I have this differential equation : x'=x+53 and I need to plot its equilibrium point using ode for multiple initial conditions,the conditions are not specified.I know that equilibrium point occurs when x'=0.The code:
function xp = f(t,x)
xp=x + 53;
end
t,x] = ode23('f',[0,4],[-56])
plot(t,x,'r')
hold on
[t,x] = ode23('f',[0,4],[0.4])
plot(t,x,'g')
[t,x] = ode23('f',[0,4],[-66])
plot(t,x,'k')
[t,x] = ode23('f',[0,4],[-88])
plot(t,x,'b')
[t,x] = ode23('f',[0,4],[-77])
plot(t,x,'y')
[t,x] = ode23('f',[0,4],[58])
plot(t,x,'r')
[t,x] = ode23('f',[0,4],[34])
plot(t,x,'b')
[t,x] = ode23('f',[0,4],[17])
plot(t,x,'g')
I got that plot.Am I doing this right?So far I think the plot shows that in 0 there is a stable equilibrium point.What to do if I want to show the stability in 33?

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!