Laplace transform of sawtooth function for 2nd order ode
4 views (last 30 days)
Show older comments
Hi all,
I have taken the rhs laplace for a sawtooth equation where:
f(t)=2t for 0<t<1
and f(t+1)=f(t)
T=2
>> syms s t lapf
lapf =simplify(int('exp(-s*t)*2*t','t=0 .. 2')/(1-exp(-s)))
pretty(lapf)
lapf =
-(2/s^2 - (2*(2*s + 1))/(s^2*exp(2*s)))/(1/exp(s) - 1)
Now I need to solve the differential equation: y'' + y = f(t)
Here, f(t) is the sawtooth function above.
I am having some difficulty marrying the two. Any suggestions would be appreciated.
Thank you!
5 Comments
Aquatris
on 26 Nov 2018
If thats what you want to do, and you are sure about the laplace transform of your sawtooth function, then the answer is easy;
Y = -(2/s^2 - (2*(2*s + 1))/(s^2*exp(2*s)))/(1/exp(s) - 1)/(s^2+1)
You already determined F in your question (the variable lapf), so why are you confused?
Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!