Vectors must be the same length.
1 view (last 30 days)
Show older comments
lamda=0.2;
mu=1-lamda;
P1=mu^2/(mu+lamda)^2;
P2=2*lamda*mu/(mu+lamda)^2;
P3=lamda^2/(mu+lamda)^2;
display(P1);
display(P2);
display(P3);
t = 1:5:100 ;
P11 = zeros(size(t)) ;
P22 = zeros(size(t)) ;
P33 = zeros(size(t)) ;
for i = 1:length(t)
P11(t)=(lamda^2/(lamda+mu)^2)*exp(-2*(lamda+mu)*t)+((2*mu*lamda)/(lamda+mu)^2)*exp(-(mu+lamda)*t)+mu^2/(lamda+mu)^2;
P22(t)=((2*mu*lamda)/(lamda+mu)^2)+(((2*lamda*(lamda-mu))/(lamda+mu)^2)*exp(-(mu+lamda)*t(i)))-2*((lamda^2/lamda+mu)^2)*exp(-2*(mu+lamda)*t(i));
P33(t)=((lamda^2/(lamda+mu)^2)*exp(-2*(mu+lamda)*t(i)))-(2*lamda^2/(lamda+mu)^2)*exp(-(mu+lamda)*t(i))+lamda^2/(lamda+mu)^2;
end
A=P11;
B=P33;
C=P22;
plot(A,t,B,t,C,t)
legend({'A','B','C'})
how can i solve this problem? Vectors must be the same length.??
1 Comment
alex brown
on 1 May 2019
Do you need something like this figure?
lamda=0.2;
mu=1-lamda;
P1=mu^2/(mu+lamda)^2;
P2=2*lamda*mu/(mu+lamda)^2;
P3=lamda^2/(mu+lamda)^2;
display(P1);
display(P2);
display(P3);
t = 1:5:100 ;
P11 = zeros(size(t)) ;
P22 = zeros(size(t)) ;
P33 = zeros(size(t)) ;
for i = 1:length(t)
P11(t)=(lamda^2/(lamda+mu)^2)*exp(-2*(lamda+mu)*t)+((2*mu*lamda)/(lamda+mu)^2)*exp(-(mu+lamda)*t)+mu^2/(lamda+mu)^2;
P22(t)=((2*mu*lamda)/(lamda+mu)^2)+(((2*lamda*(lamda-mu))/(lamda+mu)^2)*exp(-(mu+lamda)*t(i)))-2*((lamda^2/lamda+mu)^2)*exp(-2*(mu+lamda)*t(i));
P33(t)=((lamda^2/(lamda+mu)^2)*exp(-2*(mu+lamda)*t(i)))-(2*lamda^2/(lamda+mu)^2)*exp(-(mu+lamda)*t(i))+lamda^2/(lamda+mu)^2;
end
A=P11;
B=P33;
C=P22;
plot(A)
hold on
plot(B)
hold on
plot(C)
legend({'A','B','C'})
Answers (1)
KSSV
on 1 May 2019
YOu need to check the loop part.....
lamda=0.2;
mu=1-lamda;
P1=mu^2/(mu+lamda)^2;
P2=2*lamda*mu/(mu+lamda)^2;
P3=lamda^2/(mu+lamda)^2;
display(P1);
display(P2);
display(P3);
t = 1:5:100 ;
P11 = zeros(size(t)) ;
P22 = zeros(size(t)) ;
P33 = zeros(size(t)) ;
for i = 1:length(t)
P11(i,:)=(lamda^2/(lamda+mu)^2)*exp(-2*(lamda+mu)*t)+((2*mu*lamda)/(lamda+mu)^2)*exp(-(mu+lamda)*t)+mu^2/(lamda+mu)^2;
P22(i,:)=((2*mu*lamda)/(lamda+mu)^2)+(((2*lamda*(lamda-mu))/(lamda+mu)^2)*exp(-(mu+lamda)*t(i)))-2*((lamda^2/lamda+mu)^2)*exp(-2*(mu+lamda)*t(i));
P33(i,:)=((lamda^2/(lamda+mu)^2)*exp(-2*(mu+lamda)*t(i)))-(2*lamda^2/(lamda+mu)^2)*exp(-(mu+lamda)*t(i))+lamda^2/(lamda+mu)^2;
end
A=P11;
B=P33;
C=P22;
plot(A,t,B,t,C,t)
legend({'A','B','C'})
2 Comments
KSSV
on 16 Oct 2020
It is a loop indexing, where loop starts from 1 till length(t), this will ensure the arrays formed will be of dimension of t.
See Also
Categories
Find more on Creating and Concatenating Matrices in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!