gamultiobj optimizer is not working and I get the following error massage "Reference to non-existent field 'Best'"
1 view (last 30 days)
Show older comments
I have a function that its single objective was optimized by using ga optimizer in MATLAB. Everything is working. Now, I would like to solve the same function for two objectives by using multi objective ga optimizer (gamultiobj). However, the model does not run and I ge the error massage as below:
Reference to non-existent field 'Best'.
Error in gaoutfunction (line 13)
state_record(end+1) = struct('Population', state.Population, 'Best', state.Best', 'Score',
state.Score);
Error in gaoutput (line 39)
[state,optnew,changed] = feval(functions{i},options.OutputPlotFcnOptions,state,flag,args{i}{:});
Error in gamultiobjsolve (line 13)
[state,options] = gaoutput(FitnessFcn,options,state,currentState);
Error in gamultiobj (line 303)
[x,fval,exitFlag,output,population,scores] = gamultiobjsolve(FitnessFcn,nvars, ...
Error in MeanVariance_OPT (line 71)
[xGA,fval] = gamultiobj(fun,nvars,[],[],[],[],lowbond,upbond,options);
My script code as below:
global drwaing
drwaing = 0;
filename = 'Fields_Input.json';
[Pi,Pa,G,d,DStage,Wells_rate,Wells_cost,Geo,BasePrice,LowPrice,HighPrice,lifetime,Demand,dis_rate_lamda,DOFF,SOFF,On,Operating_Fields]= New_readinput(filename);
Persent_v = .25;
xGA_v = zeros(length(Persent_v), Operating_Fields*2);
fval_v = zeros(1,length(Persent_v));
% the for loop since I will later have more than a persent_V value
for i = 1:length(Persent_v)
Persent = Persent_v(i);
row = 1000;
G_MC = G/10^6; % convert G in place from MMSCF to TSCF
Mean = G_MC;
Variance = G_MC .* Persent;
mu = log((Mean.^2)./sqrt(Variance+Mean.^2));
sigma = sqrt(log(Variance./(Mean.^2)+1));
GIP = zeros(row,length(G_MC));
for index = 1:length(G_MC)
R = lognrnd(mu(index),sigma(index),[row,1]);
GIP(:,index) = R;
end
LogNormal_G = GIP * 10^6; % put the unit back to MMSCFD
% Run Optimizer
ub = [3835.61643835617,2301.36986301370,887.671232876712,4109.58904109589,2958.90410958904,1109.58904109589,863.013698630137,2739.72602739726];
lb = [1095.89041095890,605.623648161500,317.025440313112,821.917808219178,845.401174168298,277.397260273973,246.575342465753,608.828006088280];
nvars = Operating_Fields*2;
MaxProduction = ub *365;
MinProduction = lb *365;
upbond = [MaxProduction lifetime* ones(1,Operating_Fields)];
lowbond = [MinProduction zeros(1,Operating_Fields)];
clear gaoutfunction
options = optimoptions('gamultiobj','OutputFcn',@gaoutfunction,'UseParallel',true);
startTime = tic;
fun = @(x)Stochastic_Model_Function_TOP(x,Pi,Pa,LogNormal_G,d,lifetime,Demand,BasePrice,HighPrice,LowPrice,dis_rate_lamda,Geo,Wells_cost,Wells_rate,DStage,Operating_Fields,row);
[xGA,fval] = gamultiobj(fun,nvars,[],[],[],[],lowbond,upbond,options);
time_ga_parallel = toc(startTime);
record = gaoutfunction();
gapopulationhistory = vertcat(record.Population);
gabesthistory = vertcat(record.Best);
gascorehistory = vertcat(record.Score);
end
my main function to be optimized as below:
function [objective] = Stochastic_Model_Function_TOP(x,Pi,Pa,LogG,d,lifetime,Demand,BasePrice,HighPrice,...
LowPrice,dis_rate_lamda,Geo,Wells_cost,Wells_rate,DStage,Operating_Fields,row)
%Cant include everything but I'm trying to show how my objective is linked as below
NPV_C = (Revenue - CAPEX);
expectedNPV = mean(NPV_C);
sigma = std(NPV_C);
objective(1) = - expectedNPV;
objective(2) = sigma;
end
0 Comments
Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!