Integrate for a specific period of time

15 views (last 30 days)
Please help me. I am trying to use Euler integration to integrate for 10 seconds with a step size of .01 seconds. Plot x versus time.
x(0) = 1
t=0:.01:10;
x0=1;
xdot=-2*(x^3)+sin(0.5*t)*x;
for t=0:0.01:10
x=integrate(xdot,t,x0);
end
plot(t,x)

Accepted Answer

Torsten
Torsten on 13 Sep 2019
t=0:.01:10;
x = zeros(numel(t));
x(1) = 1;
fun_xdot = @(t,x) -2*(x^3) + sin(0.5*t)*x;
for i = 1:numel(t)-1
x(i+1) = x(i) + (t(i+1)-t(i))*fun_xdot(t(i),x(i));
end
plot(t,x)

More Answers (1)

Robert U
Robert U on 13 Sep 2019
Edited: Robert U on 13 Sep 2019
Hi Allison,
you can use one of Matlab's integrated ODE solvers to solve your differential equation. The code below makes use of ode45.
t=0:.01:10; % explicit time vector
x0=1; % boundary condition
% define function containing my ODE
myODE = @(t,x) -2 .* x^3 + sin( 0.5 .* t) .* x;
% solve ODE with ode45
[tsol,xsol] = ode45(myODE,t,x0);
% plot result as explicit solution points
plot(tsol,xsol,'.')
Kind regards,
Robert

Categories

Find more on Numerical Integration and Differential Equations in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!