How can I solve 6 unknowns and 6 equations for power system?
    2 views (last 30 days)
  
       Show older comments
    
below is the code having error in matlab:
function F =power(z)
v1 = 1;
d1=0;
d2=z(1);
d3=z(2);
v2=0.95;
P1=z(3);
Q1=z(4);
Q2=z(5);
Q=z(6);
v3=1.05;
F(1,1)=-9.5*sin(d2) - 10.5*sin(d3)-P1;
F(2,1)=9.5*sin(d2)+9.975*sin(d2-d3)-P1;
F(3,1)= 10.5*sin(d3)+9.975*sin(d3-d2)+0.9;
F(4,1)=9.5*cos(d2)+10.5*cos(d3)-20-Q1;
F(5,1)=9.5*cos(d2)+9.975*cos(d2-d3)-18.05-Q2;
F(6,1)=10.5*cos(d3)+9.975*cos(d3-d2)+22.486-Q;
clear all
z0=fsolve(@power,[0 0 0 0 0 0],optimset('Display','iter'))
error:
Error using  .^ 
Not enough input arguments.
0 Comments
Answers (1)
  Walter Roberson
      
      
 on 13 Nov 2019
        power is the formal name of the .^ operator. The function named power that you are creating is not on your search path. When you tried to create that function named power the command window should have warned you
Warning: Function power has the same name as a MATLAB builtin. We suggest you rename the function to avoid a potential name conflict. 
> In rmiml.hasReqDataFile
  In rmiml.visibleInToolstrip
  In matlab.desktop.editor.JavaEditorDocument>openUsingOpenFileInAppropriateEditor (line 477)
  In matlab.desktop.editor.JavaEditorDocument>@(file)openUsingOpenFileInAppropriateEditor(file) (line 76)
  In matlab.desktop.editor.JavaEditorDocument>openEditorViaFunction (line 493)
  In matlab.desktop.editor/JavaEditorDocument/openEditor (line 76)
  In matlab.desktop.editor/DocumentUtils/openEditor (line 28)
  In matlab.desktop.editor/Document/openEditor (line 253)
  In edit>openEditor (line 250)
  In edit>showEmptyFile (line 132)
  In edit (line 54) 
I suspect that power is being resolved as an object function of the double class. Object functions have priority over functions in the current directory.
In other words: you need to rename your function.
5 Comments
  Walter Roberson
      
      
 on 13 Nov 2019
				
      Edited: Walter Roberson
      
      
 on 13 Nov 2019
  
			Using Maple, I can find closed form solutions in terms of the root of a polynomial of degree 6. The solutions are periodic with 6 degrees of freedom (that is, at 6 different locations, adding 2*pi times an arbitrary integer leaves you with another solution.) The polynomial of degree 6 cannot be factored, but it has 6 real roots.
In the below, let R be the roots of the degree 6 polynomial, and let V1, V2, V3, V4, V5, V6 be arbitrary integers. Then,
z1 = arctan(-3/190*R-9/190,-52/110435315*R^5+1382/110435315*R^4+193332/110435315*R^3-5556818/110435315*R^2-39954729/110435315*R+78719/190570)+2*Pi*V5
z2 = arctan(1/70*R,2084/12321855*R^5+10342/4107285*R^4-2243086/4107285*R^3-11746876/2464371*R^2+44087201/12321855*R+333396481/8214570)+2*Pi*V6
z3 = 9/20
z4 = 19/2*cos(arctan(-3/190*R-9/190,-52/110435315*R^5+1382/110435315*R^4+193332/110435315*R^3-5556818/110435315*R^2-39954729/110435315*R+78719/190570)+2*Pi*V5)+21/2*cos(arctan(1/70*R,2084/12321855*R^5+10342/4107285*R^4-2243086/4107285*R^3-11746876/2464371*R^2+44087201/12321855*R+333396481/8214570)+2*Pi*V6)-20
z5 = 19/2*cos(arctan(-3/190*R-9/190,-52/110435315*R^5+1382/110435315*R^4+193332/110435315*R^3-5556818/110435315*R^2-39954729/110435315*R+78719/190570)+2*Pi*V5)+399/40*cos(arctan(-3/190*R-9/190,-52/110435315*R^5+1382/110435315*R^4+193332/110435315*R^3-5556818/110435315*R^2-39954729/110435315*R+78719/190570)-arctan(1/70*R,2084/12321855*R^5+10342/4107285*R^4-2243086/4107285*R^3-11746876/2464371*R^2+44087201/12321855*R+333396481/8214570)+(2*_Z5-2*V6)*Pi)-361/20
z6 = 21/2*cos(arctan(1/70*R,2084/12321855*R^5+10342/4107285*R^4-2243086/4107285*R^3-11746876/2464371*R^2+44087201/12321855*R+333396481/8214570)+2*Pi*V6)+399/40*cos(arctan(-3/190*R-9/190,-52/110435315*R^5+1382/110435315*R^4+193332/110435315*R^3-5556818/110435315*R^2-39954729/110435315*R+78719/190570)-arctan(1/70*R,2084/12321855*R^5+10342/4107285*R^4-2243086/4107285*R^3-11746876/2464371*R^2+44087201/12321855*R+333396481/8214570)+(2*V5-2*V6)*Pi)+11243/500
and
R = RootOf(16*Z^6 + 288*Z^5 - 50928*Z^4 - 611776*Z^3 - 1047932*Z^2 + 4992972*Z + 12089529, Z)
which is to say the set of values, Z, such that the polynomial in Z becomes 0. The solutions are approximately
R = [-60.48923372170306, -8.328809008541537, -3.166479395544543, -3.050016926501990, 2.866879404430057, 54.16765964786107]
See Also
Categories
				Find more on Polynomials in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
