splitting dataset into training set and testing set

180 views (last 30 days)
Munshida P
Munshida P on 14 Jan 2020
Commented: Ruaa waleed on 14 Dec 2021
I have 400 images in my dataset(images).I want to split the dataset into 80% for training and 20% for testing.the below attached code works but , test_idx is empty?why?
train_idx contains 320 images.test_idx is empty.
clc
clear
% Load Image dataset
faceDatabase = imageSet('facedatabaseatt','recursive');
%splitting into training and testing sets
N = 400; % number of images
idx = 1:N ;
PD = 0.80 ;
train_idx = idx(1:round(PD*N)); % training indices
test_idx = idx(round(PD*N)+1:end,:) ; % test indices

Accepted Answer

Akira Agata
Akira Agata on 15 Jan 2020
You can split your dataset by using partition function, like:
[setTrain, setTest] = partition(faceDatabase, [0.8, 0.2], 'randomized');
  6 Comments
Ruaa waleed
Ruaa waleed on 14 Dec 2021
please i split image data base but icant find [imgSetTrain, imgSetTest] how ican make output .txt
clc
F = fullfile('g:','iris-recognition---pm-diseased-human-driven-bsif-main','casia 2 device1');
imds = imageDatastore(F,'IncludeSubfolders',true,'LabelSource','foldernames');
labelCount = countEachLabel (imds)
% Choose first 8 images from each folder and set them to training dataset, and 2 images for test dataset
numTrainFiles= 0.8
% If you want to choose 8 and 2 images from each folder randomly, please set 'randomized' option
[imgSetTrain, imgSetTest] = splitEachLabel(imds,numTrainFiles);

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!