Transforming from Maclaurin to Taylor

1 view (last 30 days)
I have a polynomial function in terms of x, in which the highest power never exceeds 6. This function will look like a Maclaurin Series with finite terms. How to tell Matlab to rewrite this function into a Taylor one, which will express the function in terms of (x-a), where a is a real, positive number?
E.g. Original function: f(x)=x^3+x^2+x+1
Transformed functions:
If a=1, g(x)=(x-1)^3+4*(x-1)^2+6*(x-1)+4
if a=2, g(x)=(x-2)^3+7*(x-2)^2+17*(x-2)+15
and etc.
I tried using rem but it returned an error message, saying that f(x) must be a real value in order to use rem.

Accepted Answer

William Alberg
William Alberg on 15 May 2020
If i understand correctly, your code looks something like this:
syms x
f(x) = x^3 + x^2 + x +1
f(x-1)
f(x-2)
And you want to expand the expressions. This can be done with the expand command:
expand(f(x-1))
>> x^3 - 2*x^2 + 2*x
expand(f(x-2))
>> x^3 - 5*x^2 + 9*x - 5
  3 Comments
William Alberg
William Alberg on 15 May 2020
Ahh, I completely misunderstood that!
I dont know how to achieve that, since matlab dont like the "k*(x-a)^1" part, and will rewrite it. I can however get the correct "k*(x-a)^n" for n > 1
My (not complete) solution is this:
f(x) = x^3 + x^2 + x +1;
a = 1;
temp = expand(subs(f(x),x,y + a))
g(x) = subs(temp,y,x-a)
>>6*x + 4*(x - 1)^2 + (x - 1)^3 - 2
Angus Wong
Angus Wong on 15 May 2020
Edited: Angus Wong on 15 May 2020
I appologise again for my vague wordings - I have no idea what I was typing earlier. Your new solution do help, thanks a lot!

Sign in to comment.

More Answers (0)

Categories

Find more on Mathematics in Help Center and File Exchange

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!