Solving second order PDE
29 views (last 30 days)
Show older comments
Hi, I am trying to solve the following pde with initial condition CA(0,r)=0 and boundary conditions CA(t,0)=F(t) and CA(t,5)=0.
, where D_A and gamma_A are known constants.
I tried using pdepe but was told that left boundary condition would be ignored when m=1 (cylindrical symmetry).
Then I tried discretizing space variable r before using ode15s, but was confused about how to construct the equation exactly.
Can anybody help?
2 Comments
Accepted Answer
Bill Greene
on 27 Jun 2020
Edited: Bill Greene
on 27 Jun 2020
The reason that pdepe imposes a boundary condition of the flux equal zero at the
center is that this is required for the problem to be mathematically well-posed.
Imposing a prescribed temperature at the center would require that the flux go to
infinity there.
An easy way to understand this is to solve the problem with the left end a small distance
from the center and with a fine mesh. I have attached a short script below that shows this.
function matlabAnswers_6_27_2020
r0=1e-6;
x = linspace(r0,1,1000);
tf=1;
t = linspace(0,tf,40);
pdeFunc = @(x,t,u,DuDx) heatpde(x,t,u,DuDx);
icFunc = @(x) heatic(x);
bcFunc = @(xl,ul,xr,ur,t) heatbcDirichlet(xl,ul,xr,ur,t);
m=1;
sol = pdepe(m, pdeFunc,icFunc,bcFunc,x,t);
figure; plot(t, sol(:,end)); grid on; title 'Temperature at outer surface'
figure; plot(t, sol(:,1)); grid on; title 'Temperature at center'
figure; plot(x, sol(end,:)); grid; title 'Temperature at final time'
end
function [c,f,s] = heatpde(x,t,u,DuDx)
c = 1;
f = DuDx;
s = 0;
end
function u0 = heatic(x)
u0 = 0;
end
function [pl,ql,pr,qr] = heatbcDirichlet(xl,ul,xr,ur,t)
pl = ul-1;
ql = 0;
pr = 0;
qr = 1;
end
More Answers (1)
J. Alex Lee
on 27 Jun 2020
Does this help: https://www.mathworks.com/help/matlab/ref/pdepe.html
I believe that pdepe is available with base matlab.
It appeas to be able to do the space discretization automatically for you if you
See Also
Categories
Find more on PDE Solvers in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!