Cross validation in matlab
2 views (last 30 days)
Show older comments
What are the steps to performing cross validation on labels of data to get the accuracy of the results?
0 Comments
Accepted Answer
Greg Heath
on 30 Jan 2013
Edited: Greg Heath
on 1 Jan 2018
Repeat until the parameter estimates converges
1.Randomly divide the data into 10 subsets
2.For each subset
a. Use the remaining 9 subsets to design a model
b. Test the model with the holdout subset
c. Update the average and standard deviation of
the holdout test set error.
d. If std < thresh1 or std < thresh2*avg, stop.
Hope this helps.
Thank you for formally accepting my answer.
Greg
0 Comments
More Answers (1)
Ilya
on 30 Jan 2013
The Statistics Toolbox provides utilities for cross-validation. If you are using R2011a or later, take a look at ClassificationTree.fit, ClassificationDiscriminant.fit, ClassificationKNN.fit and fitensemble. Notice the 'crossval' parameter and other related parameters. If you are working in an older release or not using any of these classifiers, the crossval function is a generic utility for that purpose.
See Also
Categories
Find more on Discriminant Analysis in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!