Numerically integrating Acceleration to get displacement?
4 views (last 30 days)
Show older comments
KLETECH MOTORSPORTS
on 15 Nov 2020
Commented: Ameer Hamza
on 15 Nov 2020
I want to rephrase my last question, as i was not very clear there.
What i am trying to do is integrate the following second order, nonlinear ode, which is an expression for angular acceleration,
twice, to get the displacement, and compare it with the actual expression for displacement:
BOTH ω and A are specified initially. They are constants.
------------------------------------equation for acceleration
(corrected from )
if initial conditions are required, then x(0)=pi/4 and dx/dt (t=0) =0
this has to be integrated w.r.t time, t, twice, between the limits t=0 and t=50 (it can be any time interval)
im not sure if the interval for x has to be defined as well.
the equation for displacement is
-----------------------------------------equation for displacement (corrected from
Any help would be appreciated!
0 Comments
Accepted Answer
Ameer Hamza
on 15 Nov 2020
Are you sure that the equations are correct? The solution you posted does not satisfy the initial conditions.
Generally, such a problem can be solved using the Symbolic toolbox
syms x(t) w A
dxdt = diff(x);
dx2dt2 = diff(x,2);
ode = dx2dt2 == -A*w*sin(dxdt);
cond = [x(0)==pi/4 dxdt(0)==0];
sol = dsolve(ode, cond)
or ode45() can be used for a numerical solution.
4 Comments
Ameer Hamza
on 15 Nov 2020
Yes, in that case, initial conditions will be zero and you can use cumtrapz().
More Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!