How I write periodic BCs
1 view (last 30 days)
Show older comments
clear all;
xl=0; xr=1; %domain[xl,xr]
J=40; % J: number of dividion for x
dx=(xr-xl)/J; % dx: mesh size
tf=0.5; % final simulation time
Nt=50; %Nt:number of time steps
dt=tf/Nt;
c=50; % paremeter for the solution
mu=dt/dx;
if mu>1.0 %make sure dt satisfy stability condition
error('mu should<1.0!')
end
%Evaluate the initial conditions
x=xl:dx:xr; %generate the grid point
f=exp(-c*(x-0.2).^2); %dimension f(1:J+1)
%store the solution at all grid points for all time steps
u=zeros(J+1,Nt);
%find the approximate solution at each time step
for n=1:Nt
t=n*dt; % current time
gl = exp(-c*(xl-t-0.2)^2); % BC at left side
gr = exp(-c*(xr-t-0.2)^2); % BC at right side
if n==1 % first time step
for j=2:J % interior nodes
u(j,n)=f(j)-0.5*mu*(f(j+1)-f(j-1))+0.5*mu^2*(f(j+1)-2*f(j)+f(j-1));
end
u(1,n) = gl; % the left-end point
u(J+1,n) = gr; % the right-end point
else
for j=2:J % interior nodes
u(j,n)=u(j,n-1)-0.5*mu*(u(j+1,n-1)-u(j-1,n-1))+0.5*mu^2*(u(j+1,n-1)-2*u(j,n-1)+u(j-1,n-1));
end
u(1,n)=gl; % the left-end point
u(J+1,n)=gr; % the right-end point
end
%calculate the analytical solution
for j=1:J+1
xj=xl+(j-1)*dx;
u_ex(j,n)=exp(-c*(xj-t-0.2)^2);
end
end
%plot the analytical and numerical solution at different times
figure;
hold on;
n=10;
plot(x,u(:,n),'r.',x, u_ex(:,n),'r-');
n=30;
plot(x,u(:,n),'g.',x, u_ex(:,n),'g-');
n=50;
plot(x,u(:,n),'b.',x, u_ex(:,n),'b-');
legend('Numerical t=0.1','Analytical t=0.1','Numerical t=0.3','Analytical t=0.3','Numerical t=0.5','Analytical t=0.5');
title('Numerical and Analytical Solutions at t=0.1,0.3,0.5');
4 Comments
KALYAN ACHARJYA
on 1 Dec 2020
Edited: KALYAN ACHARJYA
on 1 Dec 2020
Are you talking about this line
f=exp(-c*(x-0.2).^2); %dimension f(1:J+1)
Make this periodic?? Like sine and cosine or more??
Answers (0)
See Also
Categories
Find more on PDE Solvers in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!