Transformation of a MATLAB Function.
5 views (last 30 days)
Show older comments
Fawad Farooq Ashraf
on 13 Mar 2021
Edited: Fawad Farooq Ashraf
on 14 Mar 2021
I have a function defined as,
f_xw = @(x,w) [3.*x(1) - x(1).^2/7 + w(1);
-2.*x(2) + w(2)];
I want to transform this from x coordinate system to \eta coordinate system which would look like
f_etaw = @(eta,w) [3.*(c1+G1*eta) - (c1+G1*eta).^2/7 + w(1);...
-2.*(c2+G2*eta) + w(2)];
where i define eta as symbolic variables
eta = sym('eta',[2 1]);
and c's are constants numbers (1x1) and G's are constant row vectors (1x2) which i can define globally.
Is there a way to do this transformation using matlabFunction command? And can this transformation be made general for all functions with n states?
0 Comments
Accepted Answer
Steven Lord
on 13 Mar 2021
f_xw = @(x,w) [3.*x(1) - x(1).^2/7 + w(1);
-2.*x(2) + w(2)];
f_etaw = @(eta,w) [3.*(c1+G1*eta) - (c1+G1*eta).^2/7 + w(1);...
-2.*(c2+G2*eta) + w(2)];
So instead of x(1) you want to use c1+G1*eta and instead of x(2) you want to use c2+G2*eta?
% assuming c1, c2, G1, and G2 already exist
f_etaw = @(eta, w) f_xw([c1+G1*eta, c2+G2*eta], w);
And can this transformation be made general for all functions with n states?
Assuming c and G are vectors that are the same size as the x input with which f_xw expects to be called:
% assuming c and G already exist
f_etaw = @(eta, w) f_xw(c+G*eta, w);
2 Comments
More Answers (0)
See Also
Categories
Find more on Function Creation in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!