How to adjust initial condition to nondimensionalization of coupled ODE?
1 view (last 30 days)
Show older comments
Here is the code for dimenional and non-dimensional form of coupled ODEs using ode45, but both results are not agreeing. Please help me in this regard.
close all;clear all;clc;
options = odeset('RelTol',1e-2,'AbsTol',[1e-2 1e-2]);
[T,Y] = ode45(@cbyjw_d,[0 30],[90000, 6000],options);
r = 4;
K = 1000000;
beta = 0.0002;
delta = 0.8;
[T1,Y1] = ode45(@cbyjw_nd,[0 30],[90000/K, 6000*(beta/r)],options);
figure(1);
plot(T,Y(:,1),'b-',T,Y(:,2),'b-.');
hold on;
plot(T1,Y1(:,1),'g-',T1,Y1(:,2),'g-.');
function dy = cbyjw_d(t,y)
dy = zeros(2,1);
A = 0;
r = 4;
K = 1000000;
beta = 0.0002;
alpha = 4e-6;
delta = 0.6;
gamma_B = 130;
gamma_W = 40;
dy(1) = r*y(1)*(1-y(1)/K)-beta*y(1)*y(2)-gamma_B*A*y(1);
dy(2) = alpha*y(1)*y(2)-delta*y(2)-gamma_W*A*y(2);
end
function dy = cbyjw_nd(t,y)
dy = zeros(2,1);
A = 0.02;
r = 4;
K = 1000000;
beta = 0.0002;
alpha = 4e-6;
delta = 0.8;
gamma_B = 130;
gamma_W = 40;
theta = (gamma_B*A)/r;
phi = (gamma_W*A*delta)/beta;
sigma = delta*alpha*K/beta;
exi = delta^2/beta;
dy(1) = y(1)*(1-y(1))-y(1)*y(2)-theta*y(1);
dy(2) = sigma*y(1)*y(2)-exi*y(2)-phi*y(2);
end
Thanks
0 Comments
Answers (0)
See Also
Categories
Find more on Ordinary Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!